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Abstract

Imagine an automatic news filtering system that tracks company news. Given
the news item “FDA approves ciprofloxacin for victims of anthrax inhalation”,
how can the system know that the drug mentioned is an antibiotic produced
by Bayer? Or consider an information professional searching for data on RFID
technology—how can a computer understand that the item “Wal-Mart supply
chain goes real time” is relevant for the search? Algorithms we present can do
just that.

When humans approach text processing tasks, such as text categorization,
they interpret documents in the context of their background knowledge and ex-
perience. On the other hand, conventional information retrieval systems repre-
sent documents as bags of words, and are restricted to learning from individual
word occurrences in the (necessarily limited) training set. We propose to enrich
document representation through automatic use of vast repositories of human
knowledge. To this end, we use Wikipedia and the Open Directory Project, the
largest encyclopedia and Web directory, respectively. Wikipedia articles and ODP
categories represent knowledge concepts. In the preprocessing phase, a feature
generator analyzes the input documents and maps them onto relevant concepts.
The latter give rise to a set of generated features that either augment or replace
the standard bag of words. Feature generation is accomplished through contextual
analysis of document text, thus implicitly performing word sense disambiguation.
Coupled with the ability to generalize from words to concepts, this approach ad-
dresses the two main problems of natural language processing—synonymy and
polysemy.

Categorizing documents with the aid of knowledge-based features leverages in-
formation that cannot be deduced from the training documents alone. Empirical
results confirm that this knowledge-intensive representation brings text catego-
rization to a qualitatively new level of performance across a diverse collection of
datasets.

We also adapt our feature generation methodology for another task in nat-
ural language processing, namely, automatic assessment of semantic relatedness
of words and texts. Previous state of the art results are based on Latent Se-
mantic Analysis, which represents documents in the space of “latent concepts”
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computed using Singular Value Decomposition. We propose Explicit Semantic
Analysis, which uses the feature generator methodology to represent the mean-
ing of text fragments in a high-dimensional space of features based on natural
concepts identified and described by humans. Computing semantic relatedness in
this space yields substantial improvements, as judged by the very high correlation
of computed scores with human judgments.
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Chapter 1

Introduction

Recent proliferation of the World Wide Web, and common availability of inex-
pensive storage media to accumulate over time enormous amounts of digital data,
have contributed to the importance of intelligent access to this data. It is the
sheer amount of data available that emphasizes the intelligent aspect of access—
no one is willing to or capable of browsing through but a very small subset of the
data collection, carefully selected to satisfy one’s precise information need.

The branch of Computer Science that deals with facilitating access to large
collections of data is called Information Retrieval (IR). The field of Information
Retrieval1 spans a number of sub-areas, including information retrieval per se, as
performed by users of Internet search engines or digital libraries; text categoriza-
tion, which labels text documents with one or more predefined categories (possibly
organized in a hierarchy); information filtering (or routing), which matches input
documents with users’ interest profiles, and question answering, which aims to
extract specific (and preferably short) answers rather then provide full documents
containing them.

Text categorization (TC) deals with assigning category labels to natural lan-
guage documents. Categories come from a fixed set of labels (possibly organized
in a hierarchy) and each document may be assigned one or more categories. Text
categorization systems are useful in a wide variety of tasks, such as routing news
and e-mail to appropriate corporate desks, identifying junk email, or correctly
handling intelligence reports.

The majority of existing text classification systems represent text as a bag of
words, and use a variant of the vector space model with various weighting schemes
(Salton and McGill, 1983). State-of-the-art systems for text categorization use a

1While the term “Information Retrieval” does not by itself imply that the information being
retrieved is homogeneous (and in fact multimedia IR systems dealing with collections of sound
and image files are becoming more popular), in what follows we only discuss IR applications to
textual data.
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variety of induction techniques, such as support vector machines, k-nearest neigh-
bor algorithm, and neural networks. The bag of words (BOW) method is very
effective in easy to medium difficulty categorization tasks where the category of a
document can be identified by several easily distinguishable keywords. However,
its performance becomes quite limited for more demanding tasks, such as those
dealing with small categories or short documents.

Early text categorization systems were predominantly manually crafted, and
since the advent of machine learning techniques to the field in early 1990s, sig-
nificant improvements have been obtained. However, after a decade of steady
improvements, the performance of the best document categorization systems ap-
pears to have reached a plateau. No system is considerably superior to others,
and improvements are becoming evolutionary (Sebastiani, 2002). In his landmark
survey, Sebastiani (2002) even hypothesized that “[the effectiveness of automated
text categorization] is unlikely to be improved substantially by the progress of
research.”

There have been various attempts to extend the basic BOW approach. Sev-
eral studies augmented the bag of words with n-grams (Caropreso, Matwin, and
Sebastiani, 2001; Peng and Shuurmans, 2003; Mladenic, 1998b; Raskutti, Ferra,
and Kowalczyk, 2001) or statistical language models (Peng, Schuurmans, and
Wang, 2004). Others used linguistically motivated features based on syntactic
information, such as that available from part-of-speech tagging or shallow pars-
ing (Sable, McKeown, and Church, 2002; Basili, Moschitti, and Pazienza, 2000).
Additional studies researched the use of word clustering (Baker and McCallum,
1998; Bekkerman, 2003; Dhillon, Mallela, and Kumar, 2003), as well as dimen-
sionality reduction techniques such as LSA (Deerwester et al., 1990; Hull, 1994;
Zelikovitz and Hirsh, 2001; Cai and Hofmann, 2003). However, these attempts
had mostly limited success.

We believe that the bag of words approach is inherently limited, as it can only
use those pieces of information that are explicitly mentioned in the documents,
and only if the same vocabulary is consistently used throughout. The BOW
approach cannot generalize over words, and consequently words in the testing
document that never appeared in the training set are necessarily ignored. Nor
can synonymous words that appear infrequently in training documents be used to
infer a more general principle that covers all the cases. Furthermore, considering
the words as an unordered bag makes it difficult to correctly resolve the sense of
polysemous words, as they are no longer processed in their native context. Most
of these shortcomings stem from the fact that the bag of words method has no
access to the wealth of world knowledge possessed by humans, and is therefore
easily puzzled by facts and terms that cannot be easily deduced from the training
set.

To illustrate the limitations of the BOW approach, consider document #15264
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in Reuters-21578, which is one of the most frequently used datasets in text catego-
rization research. This document discusses a joint mining venture by a consortium
of companies, and belongs to the category “copper.” However, this fairly long
document mentions only briefly that the aim of this venture is mining copper;
rather, its main focus is on the mutual share holdings of the companies involved
(Teck Corporation, Cominco, and Lornex Mining), as well as other mining ac-
tivities of the consortium. Consequently, the three very different text classifiers
that we used (SVM, KNN and C4.5) failed to classify the document correctly.
This comes as no surprise—“copper” is a fairly small category, and none of these
companies, nor the location of the venture (Highland Valley in British Columbia)
is ever mentioned in the training set for this category. The failure of the bag of
words approach is therefore unavoidable, as it cannot reason about the important
components of the story.

We analyze typical problems and limitations of the BOW method in more
detail in Section 2.2.

1.1 Proposed Solution

In order to break through the existing performance barrier, a fundamentally new
approach is apparently necessary. One possible solution is to depart completely
from the paradigm of induction algorithms in an attempt to perform deep un-
derstanding of the document text. Yet, considering the current state of natural
language processing systems, this does not seem to be a viable option (at least
for the time being). Lacking full natural language understanding, we believe
that in many cases common-sense knowledge and domain-specific knowledge may
be used to improve the effectiveness of text categorization by generating more
informative features than the mere bag of words.

Over a decade ago, Lenat and Feigenbaum (1990) formulated the knowledge
principle, which postulated that “If a program is to perform a complex task well,
it must know a great deal about the world it operates in.” The recognition of the
importance of world knowledge led to the launching of the CYC project (Lenat
and Guha, 1990; Lenat, 1995).

We therefore propose an alternative solution that capitalizes on the power
of existing induction techniques while enriching the language of representation,
namely, exploring new feature spaces. Prior to text categorization, we employ
a feature generator that uses common-sense and domain-specific knowledge to
enrich the bag of words with new, more informative and discriminating features.
Feature generation is performed automatically, using machine-readable reposito-
ries of knowledge. Many sources of world knowledge have become available in
recent years, thanks to rapid advances in information processing, and Internet
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proliferation in particular. Examples of general purpose knowledge bases include
the Open Directory Project (ODP), Yahoo! Web Directory, and the Wikipedia
encyclopedia.

Feature generation (also known as constructive induction) studies methods
that endow the learner with the ability to modify or enhance the representation
language. Feature generation techniques search for new features that describe
the target concepts better than the attributes supplied with the training in-
stances. These techniques were found useful in a variety of machine learning
tasks (Matheus, 1991; Fawcett, 1993; Markovitch and Rosenstein, 2002). A num-
ber of feature generation algorithms were proposed (Pagallo and Haussler, 1990;
Matheus and Rendell, 1989; Hu and Kibler, 1996; Murphy and Pazzani, 1991),
which led to significant improvements in performance over a range of classification
tasks.

Feature generation methods were also attempted in the field of text cate-
gorization (Kudenko and Hirsh, 1998; Mikheev, 1999; Scott, 1998). However,
their application did not yield any substantial improvement over the standard
approaches. By design, these methods were mostly limited to the information
present in the texts to be classified. Specifically, they made little use of linguistic
or semantic information obtained from external sources.

Our aim is to empower machine learning techniques for text categorization
with a substantially wider body of knowledge than that available to a human
working on the same task. This abundance of knowledge will to some extent
counterbalance the superior inference capabilities of humans.

In this thesis we use two repositories of world knowledge, which are the largest
of their kind—the Open Directory and the Wikipedia encyclopedia. The Open Di-
rectory catalogs millions of Web sites in a rich hierarchy of 600,000 categories, and
represents the collective knowledge of over 70,000 volunteer editors. Thus, in the
above Reuters example, the feature generator “knows” that the companies men-
tioned are in the mining business, and that Highland Valley happens to host a cop-
per mine. This information is available in Web pages that discuss the companies
and their operations, and are cataloged in corresponding ODP categories such as
Mining and Drilling and Metals. Similarly, Web pages about Highland Valley
are cataloged under Regional/North America/Canada/British Columbia.
Wikipedia is by far the largest encyclopedia in existence with over 1 million arti-
cles contributed by hundreds of thousands of volunteers. Even though Wikipedia
editors are not required to be established researchers or practitioners, the open
editing approach yields remarkable quality. A recent study (Giles, 2005) found
Wikipedia accuracy to rival that of Encyclopaedia Britannica. We discuss the
ODP and Wikipedia in more detail in Sections 4.1 and 4.2, respectively.

To tap into this kind of knowledge, we build an auxiliary text classifier that
is capable of matching documents with the most relevant concepts of the Open
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Directory and Wikipedia. We then augment the conventional bag of words with
new features that correspond to these concepts. Representing documents for text
categorization in this knowledge-rich space of words and constructed features
leads to substantially greater categorization accuracy. It is essential to mention
that this entire scheme works fully automatically. Given a knowledge repository,
the feature generator examines documents and enriches their representation in a
completely mechanical way.

We chose text categorization (TC) as the first exploration area of information
retrieval. Lewis (1992a) suggested that text categorization is more suitable for
studying feature effectiveness than text retrieval. This is because in the case of
retrieval, user requests are usually short and ambiguous, limiting the possibilities
to experiment with different indexing terms. On the other hand, in the case
of TC, documents are long and manually classified, allowing statistical analysis
of features without any additional user intervention. This allows to study text
representation separately from query interpretation.

In order to intuitively explain the necessity for feature construction, let us
draw a parallel with a (remotely related) field of speech processing. Speech sig-
nals are usually sampled at a fixed rate of several dozen times a second, yielding a
feature vector for each signal frame of 20–50 milliseconds. Obviously, understand-
ing the contents of speech using these vectors alone would be a Sisyphean task.
On the other hand, analyzing these feature vectors at the macro-level and com-
bining them into much longer sequences allows one to achieve very good results.
A similar situation occurs in image processing, where values of individual pixels
are combined into higher-level features. Of course, text words carry significantly
more meaning than speech frames or image pixels. Nevertheless, as we show in
this thesis, feature construction based on background knowledge leads to more
sophisticated features that greatly contribute to the performance of automatic
text processing.

It is interesting to observe that traditional machine learning data sets, such
as those available from the UCI data repository (Blake and Merz, 1998), are only
available as feature vectors, while their feature set is essentially fixed. On the
other hand, textual data is almost always available in raw text format. Thus, in
principle, possibilities for feature generation are more plentiful and flexible.

Our approach is not limited to text categorization and can be applied to other
tasks in natural language processing. In order to demonstrate the generality of
our approach, we also apply our feature generation methodology for assessing
semantic relatedness of natural language texts.

Prior work on semantic relatedness of words and texts was based on purely
statistical techniques that did not make use of background knowledge, such as the
Vector Space Model (Baeza-Yates and Ribeiro-Neto, 1999) or LSA (Deerwester
et al., 1990), as well as on using the WordNet electronic dictionary (Fellbaum,
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1998). Here we propose a novel method, called Explicit Semantic Analysis (ESA),
for fine-grained semantic interpretation of unrestricted natural language texts.
ESA uses our feature generation techniques to represent meaning of input texts
in a high-dimensional space of concepts derived from the ODP and Wikipedia.
The feature generator maps a text fragment into a long feature vector in this
space. Comparing vectors in this space using any familiar distance metric (e.g.,
the cosine metric (Zobel and Moffat, 1998)) allows to automatically compute the
degree of semantic relatedness between input fragments of natural language text.
Empirical evaluation confirms that the use of ESA improves the existing state of
the art in the field by 34% for computing relatedness of individual words, and by
20% for longer texts.

1.2 Contributions of This Thesis

This thesis embodies several contributions.

1. We proposed a framework and a collection of algorithms that perform fea-
ture generation using very large-scale repositories of human knowledge. Per-
forming feature generation using external information effectively capitalizes
on human knowledge encoded in these repositories, leveraging information
that cannot be deduced solely from the texts being classified.

2. We proposed a novel kind of contextual analysis performed during feature
generation, which views the document text as a sequence of local contexts,
and implicitly performs word sense disambiguation.

3. Instantiating our feature generation methodology for two specific knowl-
edge repositories, the Open Directory and Wikipedia, led to major im-
provements in text categorization performance over a broad range of test
collections, breaking the existing performance plateau. Particularly notable
improvements have been observed in categorizing short documents, as well
as categories with few training examples.

4. We formulated a new approach to automatic semantic interpretation of
natural language texts using repositories of knowledge concepts. To this
end, we used our feature generation methodology that transforms an in-
put fragment of text into a high dimensional concept space. The Explicit
Semantic Analysis we proposed based on this methodology led to major
improvements in assessing semantic relatedness of texts.

5. We also describe a way to further enhance the knowledge embedded in the
Open Directory by several orders of magnitude through crawling the World
Wide Web.
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1.3 Thesis Outline

The rest of the paper is organized as follows. In Section 2 we provide background
on text categorization and feature generation. Section 3 describes our feature
generation methodology that uses repositories of human knowledge to overcome
limitations of the conventional bag of words approach. Section 4 instantiates
this methodology with two particular knowledge resources, the Open Directory
Project and the Wikipedia encyclopedia. In Section 5 we outline the implemen-
tation details of our system, and report the results of evaluating the proposed
methodology empirically on a variety of test collections. Section 6 presents an
application of our feature generation methodology to the task of automatically as-
sessing the degree of semantic relatedness of natural language texts. In Section 7
we discuss our methodology in the context of prior work and related literature.
Section 8 concludes the thesis and outlines directions for future research.
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Chapter 2

Background

In this section we provide some background in a number of related areas. Sec-
tion 2.1 reviews the existing approaches to text categorization, while Section 2.3
presents an account of feature generation.

2.1 Text Categorization

Text categorization (TC, also known as text classification) deals with assigning
category labels to natural language documents. Categories normally come from a
fixed set of labels, and may optionally be organized in a hierarchy. Under various
definitions, the documents may be labeled with one or many categories. If each
document is labeled with precisely one category, the problem is called single-
labeled. If documents may be assigned either no categories or several categories
at once, then we are dealing with multi-labeled categorization.

Research in automatic text categorization started in the 1960s, while most ar-
ticles cite Maron’s work on probabilistic indexing (Maron, 1961) as the first major
work in the field. At the beginning, many text categorization systems were built
around manually-defined sets of rules, as exemplified by the Construe system
(Hayes et al., 1990) developed for Reuters. Obviously, it is very time-consuming
to acquire rules by manual labor, and moreover, such rules cannot be easily reused
across domains (or even across data sets from the same domain that have differ-
ent category focus and hence different word usage patterns). Consequently, the
machine learning approach prevails, where the classifier is built automatically by
learning from a training set of documents.

In order to improve categorization accuracy, researchers occasionally augment
the automatic induction process through some manual intervention. Most fre-
quently this is done by defining additional features; for example, for a junk email
filtering problem, Sahami et al. (1998) used a set of non-textual features such as
the time of the day the message was sent, or whether it had any files attached.
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In the operational text categorization setting (that is, in commercial systems),
incorporation of fine-tuned manually defined rules is also occasionally used. To
complete this description of human involvement, we shall mention the issue of
comprehensibility of the learned model. As in other application areas of machine
learning, humans who operate the computer tend to feel more confident about
the classification result if they can “understand” the way it was produced. Some
systems, notably, those using decision trees or explicitly manipulating decision
rules (e.g., Ripper (Cohen, 1995)), construct models that can be readily inter-
preted by humans. In other systems, such as those built around neural networks,
this issue might constitute a considerable challenge.1

Sebastiani (2002) and Yang (1999) present two very elaborate surveys in the
area of text categorization.

2.1.1 Document Features

The absolute majority of works in the field use plain language words as features.
In the dichotomy defined by Sebastiani (2002), these works only use endogenous
knowledge (i.e., extracted from the documents proper, as opposed to externally
supplied, or exogenous, knowledge). Whenever plain words are used as features,
they may be optionally stemmed, by collapsing morphological variants to the
same indexing term. Note, however, that results on the usefulness of stemming
remain inconclusive (Sebastiani, 2002, Section 5.1). Our experimental system
has a stemming component whose invocation is subject to run-time configura-
tion. This component is based on our own, enhanced implementation of the
Porter (Porter, 1980) algorithm. A number of works investigated the usefulness
of phrases (either syntactically or statistically motivated), but the results were
mostly discouraging, even though intuitively one would expect that phrases do
carry information important for classification.

Fuernkranz, Mitchell, and Riloff (2000) used linguistic phrases based on in-
formation extraction patterns produced by the AutoSlog-TS system. The
motivation behind these features is that they are supposed to capture some of
the syntactic structure of natural language text. For example, given a sentence
“I am a student of CS at CMU”, the following features are extracted: “I am ”,
“ is student”, “student of ”, and “student at ”. The main conclusion of
this study was that linguistic features can improve the precision of TC at the low
recall end; they do not improve precision at the high recall end, since they have
very narrow focus.

1Models built by support vector machines, which operate feature vectors in multidimensional
hyperspaces, are usually considered to be non-trivial for human interpretation. Interestingly, a
work by Dumais et al. (1998), sketches a possible way of such interpretation by examining the
magnitude of values in the model vectors.
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Dumais et al. (1998) used several kinds of NLP-derived phrases, namely,
factoids (e.g., “Salomon Brothers International”, “April 8”), multi-word dictio-
nary entries (e.g., “New York”, “interest rate”), and noun phrases (e.g., “first -
quarter”, “modest growth”). Again, these features had no impact on classifica-
tion accuracy with Naive Bayes, and even hurt slightly with SVMs.

A series of works by Mladenic and Grobelnik (Mladenic and Grobelnik, 1998b;
Mladenic and Grobelnik, 1998a; Mladenic, 1998b) used Naive Bayes to classify
Web documents collected with the aid of Yahoo! search engine. In addition to
plain words, they considered n-grams (up to 5 -grams) that were built iteratively,
constructing i -grams on the ith pass, and deleting infrequent features after each
iteration.

Caropreso, Matwin, and Sebastiani (2001) used a more sophisticated notion
of n-grams, where each n-gram comprised an alphabetically ordered sequence of
n word stems. Using an ordered sequence of stems (with stop words removed)
allowed to approximate concept indexing ; for example, expressions such as “infor-
mation retrieval” and “the retrieving of information” were effectively collapsed to
the same feature. N -grams and unigrams (regular words) competed against each
other to be selected by the feature selection algorithm. The authors evaluated
the n-grams in a so-called “learner-independent” way, by scoring the candidate
features with different feature selection functions rather then directly analyzing
text categorization performance. This research concluded that albeit bigrams can
frequently be better predictors of class membership (as judged by their feature
selection scores such as information gain), their addition does not necessarily
improves classification results, and sometimes may even adversely affect the per-
formance.

Lewis (1992a) conjectured that phrase indexing is less effective than word
indexing and requires more features. He argued that although phrases have better
semantic qualities (expressing more complex concepts) than plain words, they are
used far less frequently, therefore, their poor statistical properties outweigh any
semantic advantages they may have.

Sahami et al. (1998) designed a system for junk email filtering, which used
domain-specific features such as the (Internet) domain from which the message
was sent, the time of the day, the percentage of punctuation characters, or the
presence of attachments. The authors defined approximately 20 non-phrasal man-
ually crafted features that “required very little person-effort to create”. These
domain-specific features were combined with automatically collected terms (due
to the regular bag-of-words representation), and then feature selection was per-
formed using the mutual information criterion. This work further suggested the
use of domain-specific features for the TC task in general, and proposed examples
of appropriate features, such as document authors, author affiliations, and pub-
lishers. It should be noted that these are actually extra-linguistic features, since
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they do not carry genuine linguistic knowledge, or knowledge about the domain
of the texts to be classified.

Ghani et al. (2000) described a data mining system that used several types of
features to discover new facts about public companies. The authors did not use
feature generation per se, but nevertheless their sources of features are interest-
ing, and relevant to our present discussion. The database of companies comprised
a collection of HTML pages from Web sites describing these companies’ activi-
ties. Three kinds of features were used. Extracted features (e.g., performs-activity,
officers) were obtained from the HTML pages using information extraction tech-
niques, while additional extracted features (e.g., sector) were determined by Naive
Bayes classification of Web pages. Wrapped features (e.g., competitor, subsidiary)
resulted from a collection of wrappers developed for the Hoovers Internet database
of companies2. The wrappers assumed a uniform format of Hoovers pages con-
taining information about the companies, and extracted the values of predefined
fields. Abstracted features (e.g., same-state, reciprocally-competes) were specified
manually to provide the data mining algorithms with background knowledge;
the values for these features were obtained from cross-referencing other features.
Based on these features, the authors employed C5.0 (an improved version of C4.5
(Quinlan, 1993)) to mine previously unobserved dependencies in the data. For
example, the system could detect that many companies that offer computer soft-
ware and services retain Pricewaterhouse Coopers or Ernst & Young as their
auditors.

2.1.2 Feature Selection

Term (or feature) selection is necessary to reduce noise, as well as to prevent
overfitting. Some machine learning techniques exhibit inferior performance when
presented with too many attributes3, so it is essential to select only the best ones.

Lewis (1992a) and Sebastiani (2002) note that in order to avoid overfitting,
the number of training examples should be commensurate with the number of
features; a common rule of thumb is that the number of training examples per
class should be at least ten times the number of features (Jain, Duin, and Mao,
2000). Sebastiani (1999) brings a simple yet instructive example for the case of
possible overfitting. If a classifier for category Cars for sale were trained on only
three examples, in two of which the car sold was yellow, then the classifier might
mistakenly consider “yellowness” an essential property of this category. In the
light of this example, it would be interesting to apply knowledge-based feature

2Hoovers Online, http://www.hoovers.com.
3One notable example is the k-nearest neighbor (KNN) algorithm, which usually does not

weigh features differently according to their discriminative ability, and thus spurious features
simply increase the amount of noise.
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selection techniques, to ascertain which features represent intrinsic properties of
the concept to be learned.

Two main approaches for feature selection are filtering and wrapper model
(John, Kohavi, and Pfleger, 1994). The filtering approach receives a set of fea-
tures, and filters it independently from the induction algorithm. The wrapper
model searches for good feature subsets, and evaluates them using n-fold cross-
validation on the training data. This scheme may be used in conjunction with
any induction algorithm, which is used for evaluating feature subsets on the val-
idation set. The search for feature subsets can be performed using simple greedy
algorithms such as backward elimination or forward selection, or more complex
ones that can both add and delete features at each step.

Since the wrapper model requires much more computation, filtering is the
more common type of feature selection. This is especially true in the domain
of textual information retrieval, where using the bag-of-words model results in a
huge number of features. A number of feature selection techniques were described
in the TC literature, while Yang and Pedersen (1997) found document frequency
(DF), information gain (IG) and χ2 (CHI) to be the most effective (reducing the
feature set by 90-98% with no performance penalty, or even a small performance
increase due to removal of noise). Yang and Pedersen (1997) also observed that
contrary to a popular belief in information retrieval that common terms are less
informative, document frequency, which prefers frequent terms (except for stop
words), was found to be quite effective for text categorization.

Feature selection may be either local, resulting in category-specific features,
or global, yielding collection-wide features. Document frequency is immediately
suitable for global feature selection, while in order to adapt information gain and
χ2 to global operation, the sum of scores, weighted average or the maximum score
(over categories) can be used.

When category-specific features are used, a problem may arise for categories
with little training data. When only a few documents are available for a category,
the number of candidate features is simply too small, so even if all of them are
selected, document vectors in this category may be extremely sparse (and some
may even be empty). To overcome this problem, one can unconditionally select
some minimum number of features regardless of their actual scores, or “back off”
to global features whenever an insufficient number of local features are available.

Recently, Joachims (1998) argued that support vector machines are very ro-
bust even in the presence of numerous features. He further claimed that the
multitude of text features are indeed useful for text categorization. To substan-
tiate this claim, Joachims used the Naive Bayes classifier with feature sets of
increasing size, where features were first ordered by their discriminative capac-
ity (as predicted by the information gain criterion), and then the most powerful
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features were removed. The classifier trained on these “low-utility” features per-
formed markedly better than random assignment of categories to documents, thus
implying that all features are relevant and should be used. Based on these find-
ings, many later works using SVMs did not perform any feature selection at all
(Leopold and Kindermann, 2002; Lewis et al., 2004). At the same time, others
achieved very decent results while using some form of feature selection (notably,
the result reported by Dumais et al. (1998) is considered the best one for the
Reuters-21578 collection), so the evidence in this respect remains inconclusive.4

Observe that filtering techniques ignore mutual dependence between features,
even though features are usually not completely independent. In the domain of
text categorization, where features are plain words, there is naturally a consid-
erable dependence among them. One simple approach to address this issue has
been proposed by Soucy and Mineau (2001). They first select a small number
of features according to the information gain criterion, and then further select
only those features that both have high information gain (above some prede-
fined threshold) and do not co-occur too often with the features already selected.
Another feature selection technique recently proposed for text categorization ad-
dresses a situation that arises in processing huge data sets, such as Reuters Corpus
Volume 1 (Lewis et al., 2004). In such cases, there exists a trade-off between the
size of the feature space and the amount of training documents that can be used
for learning. To circumvent this problem, Brank et al. (2002) proposed to first
train a linear SVM classifier in the full feature space using only a fraction of the
training data, then use the trained model to rank the features and retain only
the best ones. This way, feature selection involves examining the normal vector
to the hyperplane separating the classes, and removing features that correspond
to the vector components with low absolute values (since they have less impact
on the classification outcome than those with high values). Finally, a new model
is trained (using either the same or a different classifier), which only makes use
of the features selected in the previous step, but now taking advantage of all the
training data.

In addition to the “principled” feature selection schemes described above, two
additional steps are frequently performed, namely, removal of stop words5 and

4In our own experiments, using 10% of features instead of the entire feature set has little
effect for Reuters-21578 (-0.1% . . . +0.3% depending on the category set), and a small positive
effect of 1.3% for the Movie Reviews data set (Pang, Lee, and Vaithyanathan, 2002). For the
20 Newsgroups collection (Lang, 1995), using all the features improves SVM results by as much
as 4.7%, but this is due to the particular nature of newsgroup postings, which exhibit a very
large and diversified vocabulary.

5In an application of text classification techniques to information extraction, where the task
was to estimate the relevancy of extracted patterns to various categories, Riloff (1995) found
that stemming and removal of function words (e.g., prepositions) may harm the performance of
TC considerably. This happens because specific words forms may be more characteristic than
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words occurring in the collection less than some predefined number of times (or
less than in some predefined number of documents). For the former task, many
researchers adopted the stop word lists developed by Lewis (1992b) and Salton
(1971).

2.1.3 Feature Valuation

After the features have been selected, they need to be assigned values for each
document vector. This step is commonly known as feature valuation or term
weighting. Numerous term weighting schemes are available, while most can be
described as particular cases of the tf.idf family introduced by Salton and Buckley
(1988) in the SMART project.

Each scheme can be represented as a triple of parameters XY Z, where X
stands for the term frequency factor, Y for the document frequency, and Z for
the normalization method. A list of the most frequently used schemes is given
below6, and further details are available in (Hersh et al., 1994; Salton and Buckley,
1988; Singhal, 1998; Manning and Schuetze, 2000, pp.541–544).

The following definitions describe the weighting of term tk in document dj.
We use N to denote the total number of documents in the collection, count(tk, dj)
— the number of times tk occurs in dj (term frequency), and dfk — the number
of documents in the collection that contain tk (document frequency).

• X (term frequency)

– l (logarithmic) = 1 + log(count(tk, dj))

– L (log-average) = 1+log(count(tk,dj))

1+log(tfavg(dj))
,

where tfavg(dj) — average term frequency in the document

– a (augmented) = 0.5 + 0.5∗count(tk,dj)

tfmax(dj)
,

where tfmax(dj) = maxi count(ti, dj) — maximum term frequency in
the document

– n (natural) = count(tk, dj)

– b (binary) =

{
1, if tk ∈ dj

0, otherwise

• Y (document frequency)

– t (inverse document frequency) = log( N
dfk

)

others of particular categories. Manning and Schuetze (2000) also note that “little” words often
prove useful for the task of author identification (which can be easily cast as a classification
problem).

6All these schemes are implemented in our Hogwarts text categorization system.
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– n (natural) = 1.0

• Z (normalization)

– c (cosine) = 1√∑
i
(weight of termi)2

– u (pivoted unique normalization) =
1

(1−slope)+slope∗ number of unique words in the document
average number of unique words per document

– n (no normalization)

Of these, the ltc scheme has been found the most effective (Yang, 1999; Sebas-
tiani, 2002). Putting everything together, ltc stands for logarithmic weighting of
occurrence counts (l), inverse document frequency (t), and cosine normalization
(c):

tfidf(tk, dj) = tf(tk, dj) · log
N

dfk

,

where

tf(tk, dj) =

{
1 + log count(tk, dj), if count(tk, dj) > 0
0, otherwise

.

Finally, cosine normalization is applied to tf.idf weights to disregard differences
in document length, by weighting all components of the feature vector as follows:

wkj
=

tfidf(tk, dj)√∑r
s=1 tfidf(ts, dj)2

,

where r is the number of selected features.

2.1.4 Metrics

Following (Yang, 1999), we define text categorization performance measures using
the following two-way contingency table:

Classification = Yes Classification = No

Correct = Yes a b
Correct = No c d

Then the following metrics can be introduced:

• precision: p = a/(a + c) (undefined when a + c = 0);

• recall: r = a/(a + b) (undefined when a + b = 0);
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• fallout: f = c/(c + d) (undefined when c + d = 0);

• accuracy: Acc = (a + d)/n, where n = a + b + c + d > 0;

• error: Err = (b + c)/n, where n = a + b + c + d > 0.

Historically, accuracy and error are the standard metrics used in machine
learning experiments. However, these metrics are hardly suitable for most text
categorization applications. In real-life text collections there are many more neg-
ative examples than positive ones (usually, by orders of magnitude). Therefore,
since accuracy and error have the total number of examples in the denominator,
they are very insensitive to changes in true classification performance, and com-
monly produce very large (in case of accuracy) and very small (in case of error)
values (fallout suffers from a similar problem).

The basic metrics commonly used to evaluate text categorization performance
are precision and recall, taken from the mainstream information retrieval research.
When it is desirable to visualize the performance of a TC system, the value of
precision may be plotted for a number of values of recall; borrowing from electrical
engineering terminology, the resulting graph is usually called a receiver operating
curve (ROC).

Sometimes, it is convenient to have a single measure instead of two, in which
case the F -measure (van Rijsbergen, 1979, Chapter 7) may be used:

Fβ(p, r) =
(β2 + 1)pr

β2p + r
,

where p and r denote precision and recall, respectively.
The β parameter allows fine-tuning the relative importance of precision over

recall. When both metrics are equally important, the F1 measure is used: F1 =
2pr/(p + r).

The precision-recall Break-Even Point (BEP) is occasionally used as an al-
ternative to F1. It is obtained by either tuning the classifier so that precision
is equal to recall, or sampling several (precision, recall) points that bracket the
expected BEP value and then interpolating (or extrapolating, in the event that
all the sampled points lie on the same side).

In the presence of two or more categories, it is handy to have a single value that
reflects the overall performance. In such a case, either micro-averaging or macro-
averaging of category-specific performance measures is used. The former accu-
mulates a, b, c, d values over the documents in all categories, and then computes
precision and recall (as well as F1 and BEP) values. The latter simply averages
precision and recall computed for each category individually.7 Macro-averaging

7In the case of macro-averaging, there is an issue of evaluating the ratio 0/0 that can result
in some underpopulated categories. Various approaches set it to either 0, 1, or some very small
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ignores the relative sizes of categories, which may or may not be appropriate in
each case at hand. Therefore, although most researchers report micro-averaged
metrics, others perform both types of averaging.

2.1.5 Notes on Evaluation

It should be remembered that there is an upper limit on the performance of
text categorization systems, as even humans occasionally disagree on assignment
of categories to documents. This is a manifestation of inter-indexer inconsis-
tency (Sebastiani, 2002) common in information retrieval. Rose, Stevenson, and
Whitehead (2002) studied this phenomenon in depth, analyzing the consistency
of classification of Reuters news items by a group of Reuters editors. They found
the inter-editor consistency to be quite high (about 95%), but still not 100%.
Observe also that this high correlation was probably due to the fact that Reuters
employs seasoned information professionals, whose judgement is further bound
by strict in-house policies on labeling news stories; therefore, in less constrained
circumstances the agreement among humans would probably be lower.

2.2 Problems With the Bag of Words Approach

1. Words that appear in testing documents but not in training documents are
completely ignored by the BOW approach. Since the classification model is
built with a subset of words that appear in the training documents, words
that do not appear there are excluded by definition. Lacking the ability
to analyze such words, the system may overlook important parts of the
document being classified.

Example: Document #15264 from Reuters-21578 described in the Intro-
duction presents a perfect example of this limitation. This document de-
scribes a copper-mining venture formed by a group of companies, whose
names are not mentioned even once in the training set, and are thus ig-
nored by the classification model.

2. Words that appear infrequently in the training set, or appear just once, are
mostly ignored even if they are essential for proper classification. It often
happens that human annotators assign a document to a certain category
based on some notion briefly mentioned in the document. If the words
that describe this notion do not appear with sufficient frequency elsewhere
in the training set, then the system will overlook the real reason for this

positive value. Observe that the different decisions can adversely affect the overall averaged
performance score.
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document’s annotation. Consequently, it will either come up with some
spurious association between the actual category and unrelated words or
ignore this document as a training example altogether.

Example: Suppose we have a collection of pharmaceutical documents and
are trying to learn the concept of antibiotics. If a particular training docu-
ment describes the results of a clinical trial for a new antibiotic drug, and
mentions it only by a brand name that does not appear elsewhere in the
training set, the system will likely miss this important piece of evidence.

3. The problem described in the previous item can manifest itself in a more
extreme way. Suppose we have a group of related words, where each word
appears only a few times in the collection, and few documents contain
more than one word of the group. As a result, the connection between
these words remains implicit and cannot be learned without resorting to
external knowledge. External knowledge, however, allows us to determine
that certain words are related. Furthermore, we can use the generalization
ability of hierarchical knowledge organization to establish that the words
correspond to specific instances of the same general notion.

Example: Consider a collection of clinical narrative reports on administer-
ing various antibiotic drugs. Since such reports are circulated among med-
ical professionals, they are likely to refer to specific drugs by name, while
omitting the knowledge already shared by the target audience. Hence, the
reports will likely not explain that each drug is actually an antibiotic. In
the absence of this vital piece of knowledge, the BOW approach can easily
fail to learn the notion shared by the reports.

4. A critical limitation of the BOW approach lies in its ignorance of the con-
nections between the words. Thus, even more difficult than the problem
described in the previous item, is the one where we have several related
phrases or longer contexts, while the connection between them is not stated
in any single document.

Example: Consider again a collection of clinical reports, which are in-
herently rich in diverse medical terminology. Often, each report describes
the case of a single patient. Thus, without extensive medical knowledge it
would be nearly impossible to learn that Lown-Ganong-Levine Syndrome
and Wolff-Parkinson-White Syndrome are different kinds of arrhythmia,
while Crigler-Najjar Syndrome and Gilbert Syndrome are two kinds of liver
diseases.

5. Because contextual adjacency of words is not taken into account by the
BOW approach, word sense disambiguation can only be performed at the
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level of entire documents, rather than at much more linguistically plausible
levels of a single sentence or paragraph.

Example: As an extreme example of this limitation, consider a document
about the Jaguar company establishing a conservation trust to protect its
namesake8 animal. This fairly long document is devoted mainly to the
preservation of wildlife, while briefly covering the history of the car manu-
facturer in its last paragraph. Taken as a single bag of words, the document
will likely be classified as strongly related to jaguar the animal, while the
cursory mention of Jaguar the company will likely be ignored.

Some of these limitations are due to data sparsity—after all, if we had infi-
nite amounts of text on every imaginable topic, the bag of words would perform
much better. Many studies in machine learning and natural language processing
addressed the sparsity problem. Simple approaches like smoothing (Chen and
Goodman, 1996) allocate some probability mass for unseen events and thus elim-
inate zero probabilities. Although these approaches facilitate methods that are
sensitive to zero probabilities (e.g., Naive Bayes), they essentially do not intro-
duce any new information. More elaborate techniques such as transfer learning
(Bennett, Dumais, and Horvitz, 2003; Do and Ng, 2005; Raina, Ng, and Koller,
2006) and semi-supervised learning (Goldberg and Zhu, 2006; Ando and Zhang,
2005a; Ando and Zhang, 2005b), leverage cooccurrence information from similar
learning tasks or from unlabeled data. Other studies that addressed the sparsity
problem include using the EM algorithm with unlabeled data (Nigam, McCal-
lum, and Mitchell, 2006; Nigam et al., 2000), latent semantic kernels (Cristianini,
Shawe-Taylor, and Lodhi, 2002), transductive inference (Joachims, 1999b), and
generalized vector space model (Wong, Ziarko, and Wong, 1985).

Humans avoid these limitations due to their extensive world knowledge, as
well as their ability to understand the words in context rather than just view
them as an unordered bag. In this thesis we argue that the limitations of the bag
of words can be overcome by endowing computers with access to the wealth of
human knowledge. Recall the sample Reuters document we considered above—
when a Reuters editor originally handled this news item, she most likely knew
quite a lot about the business of the companies mentioned, and based on her deep
domain knowledge she easily assigned the document to the category “copper.” It
is this kind of knowledge that we would like machine learning algorithms to have
access to.

8http://www.jaguarusa.com/us/en/company/news events/archive/Jaguar Conserva-
tion trust longcopy.htm
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2.3 Feature Generation

Feature generation (FG), also known as feature construction, constructive induc-
tion or bias shift, is a process of building new features based on those present in
the examples supplied to the system, possibly using the domain theory (i.e., in-
formation about goals, constraints and operators of the domain) (Fawcett, 1993).
Feature construction techniques can be useful when the attributes supplied with
the data are insufficient for concise concept learning.

Matheus (1991) proposed to use constructive induction to address the prob-
lems of disjunctive regions in the instance space (i.e., discontinuous concepts). He
posed the following issues as the main questions of constructive induction, and
suggested approaches to answer them from the instance-based, hypothesis-based,
and knowledge-based points of view.

1. When should new features be constructed?

• Instance-based detection: estimate irregularity of the membership
function from the distribution of observed instances.

• Hypothesis-based detection: an initial hypothesis fails to meet some
performance criterion.

• Knowledge-based detection: use domain knowledge.

2. What constructive operators should be used and which of the existing fea-
tures should they be applied to?

• Instance-based selection: search for patterns among training instances.

• Hypothesis-based selection: for example, analyze the structure of
branches in decision trees.

• Knowledge-based selection: use domain theory.

3. Which (if any) features should be discarded?

• Instance-based evaluation: use probabilistic or information-theoretic
measures.

• Hypothesis-based evaluation: for example, rank features according to
how well they are used within the hypothesis.

• Knowledge-based evaluation: Domain knowledge is generally used for
the generation rather than evaluation of features. Nevertheless, fea-
tures can be evaluated according to how well they conform to the
domain knowledge.
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Feature generation has been studied in a number of works over the recent
years, and several notable algorithms have been proposed. Most prominent ex-
amples include the FRINGE (Pagallo and Haussler, 1990), CITRE (Matheus
and Rendell, 1989) and GALA (Hu and Kibler, 1996) algorithms that manip-
ulate boolean combinations of features, the ID2-of-3 (Murphy and Pazzani,
1991) algorithm that uses M-of-N concepts, various genetic algorithms that ap-
ply crossover and mutation operations to feature bit strings, and the FICUS
algorithm (Markovitch and Rosenstein, 2002) that generalizes over previous ap-
proaches by using constructor functions and searches the space of generated fea-
tures.

Callan (1993) suggested a feature generation technique suitable for search
domains (e.g., the n-queens problem). He observed that “search goal descriptions
are usually not monolithic, but rather consist of subexpressions, each describing
a goal or constraint”. Taken together they characterize the goal state, but they
can also be used independently to measure progress in reaching the goal. This
work proposed a set of heuristics for decomposing goal specifications into their
constituent parts, in order to use them as features.

Classical approaches to feature generation belong to two main classes:

• Data-driven, in which new features are created by combining existing fea-
tures in various ways. Feedback from the learned concept is typically used
to suggest plausible feature combinations.
Limitations: The amount of the improvement is limited, since the algo-
rithm starts with the example features, and combines features one step at
a time. If useful feature are complex combinations of example features, the
system will have to generate and test prohibitively many features until a
useful one is derived.

• Analytical, using domain theory to deduce appropriate new features.
Using information about the domain helps create complex features in one
step.
Limitations: such systems can only create features that follow deductively
from the domain theory. Many real-world domains require useful features
that are not deducible from the domain theory, and these analytical systems
are incapable of deriving them.

Fawcett (1991) proposed a hybrid theory of feature generation, so that useful
features can be derived from abstractions and combinations of abstractions of
the domain theory. Abstractions are created by relaxing conditions specified in
a domain theory, using a hybrid of data-driven (bottom-up) and theory-driven
(top-down) approaches.

It is important to distinguish between feature generation and feature selection.
While the former attempts to construct new features not present in the original
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description of the data, the latter starts with a set of features and attempts to
decimate it. Feature selection is frequently used in tandem with feature genera-
tion. Some approaches to feature generation employ a generate and test strategy,
where a set of new features is created, which is then filtered according to some
fitness criterion, then another FG iteration is performed using the original and
selected constructed features, and so on. Using all the generated features with-
out pruning the set heavily after each iteration may result in a combinatorial
explosion of the number of features.

27



28



Chapter 3

Feature Generation Methodology

In Section 2.2 we discussed a number of problems with the BOW approach. We
now proceed to developing a feature generation methodology that will address
and alleviate these problems using repositories of human knowledge.

3.1 Overview

The proposed methodology allows principled and uniform integration of one or
more sources of external knowledge to construct new features. These knowledge
sources define a collection of concepts that are assigned to documents to qualify
their text. In the preprocessing step, we build a feature generator capable of
representing documents in the space of these concepts. The feature generator is
then invoked prior to text categorization to assign a number of relevant concepts
to each document. Subsequently, these concepts give rise to a set of constructed
features that provide background knowledge about the document’s contents. The
constructed features can then be used either in conjunction with or in place of the
original bag of words. The resulting set optionally undergoes feature selection,
and the most discriminative features are retained for document representation.

We use traditional text categorization techniques to learn a text categorizer in
the new feature space. Figure 3.1 depicts the standard approach to text catego-
rization. Figure 3.2 outlines the proposed feature generation framework; observe
that the “Feature generation” box replaces the “Feature selection” box framed
in bold in Figure 3.1.
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3.2 Requirements on Suitable Knowledge

Repositories

We impose the following requirements on knowledge repositories for feature gen-
eration:

1. The repository contains a collection of concepts, which are defined by
humans and correspond to notions used by humans in commonsense or
domain-specific reasoning. Formally, let KR be a knowledge repository
that contains concepts C = {c0, . . . , cn}.

2. There is a collection of texts associated with each concept. The feature
generator uses these texts to learn the definition and scope of the concept,
in order to be able to assign it to relevant documents. We refer to these
texts as textual objects, and denote the set of such objects associated with
concept ci as Ti = {t0,1, . . . , ti,mi

}.

3. Optionally, there is a collection of relations between concepts, R =
{r1, . . . , rl}, where each relation is a set of pairs of concepts, rk = {〈ci, cj〉}.
For example, one such relation could be a generalization (“is-a”) relation,
which organizes the concepts into a hierarchical structure. In what follows,
Section 3.5 discusses the extension of our methodology to hierarchically-
structured knowledge bases, and Section 3.6 discusses the use of arbitrary
relations.

Let W be a set of words that appear in documents to be classified. Our goal
is to build a mapping function f : W ∗ → 2C . We propose building the mapping
function using text categorization techniques. This is a very natural thing to
do, as text categorization is all about assigning documents or parts thereof to a
predefined set of categories (concepts in our case). One way to do so is to use
a binary learning algorithm L(Pos,Neg) to build a set of n binary classifiers,
f0, . . . , fn, such that fi : W ∗ → {0, 1}. This way, individual classifiers are built
using the chosen learning algorithm: fi = L(Ti,

⋃
0≤j≤n,j 6=i Tj). Another way to

build such a mapping function is to devise a hierarchical text classifier that takes
advantage of the hierarchical organization of categories. In this paper, we use a
simpler approach of building a single classifier that simultaneously considers all
the concepts for each input sequence of words.

We believe that the above requirements are not overly restrictive. In fact,
there are quite a few sources of common-sense and domain-specific knowledge
that satisfy these requirements. We list below several notable examples.
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• Internet directories such as the Yahoo Web Directory1, the Open Direc-
tory Project2 and the LookSmart directory3 catalog huge numbers of URLs
organized in an elaborate hierarchy. The Web sites pointed at by these
URLs can be crawled to gather a wealth of information about each direc-
tory node. Here each directory node defines a concept, and crawling the
Web sites cataloged under the node provides a collection of textual objects
for that node.

• The Medical Subject Headings (MeSH) taxonomy (MeSH, 2003), which de-
fines over 18,000 categories and is cross-linked with the MEDLINE database
of medical articles, is a notable example of a domain-specific knowledge
base. The MEDLINE links allow to easily associate MeSH nodes with nu-
merous scientific articles that are highly relevant to the node, yielding a set
of textual objects for that node.

• Other domain-specific knowledge repositories are also available, notably in
the terminology-rich law domain, which includes the KeySearch taxonomy
by WestLaw4 and the Web-based FindLaw hierarchy5 (both of them cross-
linked with material relevant for each node).

• The US Patent Classification6 and the International Patent Classification7

are exceptionally elaborate taxonomies, where each node is linked to rele-
vant patents.

• The online Wikipedia encyclopedia8 has a fairly shallow hierarchy but its
nodes contain very high-quality articles, which are mostly noise-free (except
for occasional spamming).

• In the brick-and-mortar world, library classification systems such as the
Universal Decimal Classification (UDC) (Mcilwaine, 2000), the Dewey Dec-
imal Classification (Dewey et al., 2003) or the Library of Congress Classifi-
cation (Chan, 1999) provide structuring of human knowledge for classifying
books. By the very virtue of their definition, each classification node can be
associated with the text of books cataloged under the node. Interestingly,

1http://dir.yahoo.com
2http://www.dmoz.org
3http://search.looksmart.com/p/browse
4http://west.thomson.com/westlaw/keysearch
5http://www.findlaw.com
6http://www.uspto.gov/go/classification
7http://www.wipo.int/classifications/ipc/en
8http://www.wikipedia.org
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modern book-scanning efforts such as those underway at Google and Ama-
zon can eventually make it possible to build feature generators powered by
the knowledge available in printed books.

In this work we use the ODP and Wikipedia as our knowledge repositories,
due to the easy accessibility of their data on the Web. In the next section, we shall
discuss the instantiation of our methodology for these two knowledge repositories.
However, our methodology is general enough to facilitate other knowledge sources
such as those listed above, and in our future work we intend to explore their utility
as well, focusing in particular on the MeSH hierarchy for domain-specific feature
generation.

A note on terminology is in order here. The most commonly used term for
nodes of directories of knowledge is “category.” In text categorization, however,
this term normally refers to topical labels assigned to documents. To prevent
possible confusion, we use the word “concept” to refer to the former notion. We
represent such concepts as vectors in a high-dimensional space of “attributes.”
Again, we avoid using the term “features,” which is reserved for denoting indi-
vidual entries of document vectors in text categorization per se.

3.3 Building a Feature Generator

The first step in our methodology is preprocessing, performed once for all future
text categorization tasks. In the preprocessing step we induce a text classifier
that maps pieces of text onto relevant knowledge concepts, which later serve as
generated features. The resulting classifier is called a feature generator according
to its true purpose in our scheme. The feature generator represents concepts as
vectors of their most characteristic words, which we call attributes (reserving the
term features to denote the properties of documents in text categorization).

The feature generator operates similarly to a regular text classifier—it first
learns a classification model in the space of concept attributes, and then identi-
fies a set of concepts that are most appropriate to describe the contents of the
input text fragment. Observe that the number of concepts to which the feature
generator can classify document text is huge, as suitable knowledge repositories
may contain tens and even hundreds of thousands of concepts. Few machine
learning algorithms can efficiently handle so many different classes and about an
order of magnitude more of training examples. Suitable candidates include the
nearest neighbor and the Naive Bayes classifier (Duda and Hart, 1973), as well as
prototype formation methods such as Rocchio (Rocchio, 1971) or centroid-based
(Han and Karypis, 2000) classifiers.
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3.3.1 Attribute Selection

Prior to learning a text classifier that will act as feature generator, we represent
each concept as an attribute vector. To this end, we pool together all the textual
objects for the concept, and represent the accumulated description with a vector
of words. Using all encountered words as attributes is impractical because it yields
a classification model that is too big, and because this would inevitably increase
the level of noise. The former consideration is essential to allow fitting the induced
model into computer memory. The latter consideration is particularly important
for Web-based knowledge repositories, which are inherently plagued with noise
ranging from intentional directory spamming to merely irrelevant information.
To remedy the situation, we perform attribute selection for each concept prior to
learning the feature generator.

To this end, we use standard attribute selection techniques (Sebastiani, 2002)
such as information gain, and identify words that are most characteristic of a con-
cept versus all other concepts. This approach to attribute selection is reminiscent
of the approaches described by Chakrabarti et al. (1997) and by Koller and Sa-
hami (1997). Let us denote by Di the collection of textual objects associated
with concept ci, Di =

⋃
k=0...mi

ti,k, and by Di the collection of textual objects for
all other concepts, Di =

⋃
l=0...n,l 6=i

⋃
k=0...ml

tl,k. Then, we can assess the discrim-
inative capacity of each word w ∈ Di with respect to Di. It is essential to note
that conventional attribute selection techniques select attributes for ci from the
entire lexicon, Di ∪Di. In our case, however, we aim at selecting words that are
most characteristic for the concept, and therefore we limit the selection only to
words that actually appear in the textual objects for that concept, that is, Di.

Figure 3.3 shows the algorithm for building a feature generator. The algorithm
uses a global structure Text(ci) that accumulates textual objects for concept ci

(attributes for the concept are then selected from the words occurring in this
pool). We manipulate Text(ci) as an unordered bag of words. Attribute vectors
for each category are stored in V ector(ci).

3.3.2 Feature Generation per se

Given a fragment of text for which we desire to generate features, we represent
it as an attribute vector, and then compare it to the vectors of all knowledge
concepts. The comparison can use any distance metric for comparing vectors
in a high-dimensional space; in this work, we use the cosine metric. The de-
sired number of highest-scoring concepts are then returned as generated features.
Figure 3.4 outlines this process.
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Algorithm BuildFeatureGenerator
# Compute attribute vectors for all concepts
BuildVectors()

# Use an induction algorithm to train a feature generator FG
# using the attribute vectors V ector(ci)
FG ← InduceClassifier({V ector(ci)})

———————————————————————————————-
Algorithm BuildVectors()

For each ci ∈ C = {c0, . . . , cn} do
Text(ci) ← ⋃

k=0...mi
ti,k

# Build the attribute vector by performing attribute selection
# among the words of Text(ci)
V ector(ci) ← AttributeSelection(Text(ci))
# Assign values to the selected attributes
V ector(ci) ← tfidf(V ector(ci))

Figure 3.3: Building a feature generator

Algorithm FG(text, distanceMetric, numConcepts)
TextV ector ← tfidf(text)
For each ci ∈ C = {c0, . . . , cn} do

Score(ci) ← distanceMetric(TextV ector, V ector(ci))
Let GeneratedConcepts be a set of numConcepts concepts

with the highest Score(ci)
Return GeneratedConcepts

Figure 3.4: Feature generation

3.4 Contextual Feature Generation

Feature generation precedes text categorization, that is, before the induction
algorithm is invoked to build the text categorizer, the documents are fed to the
feature generator.

Traditionally, feature generation uses the basic features supplied with the
training instances to construct more sophisticated features. In the case of text
processing, however, important information about word ordering will be lost if
the traditional approach is applied to the bag of words. Therefore, we argue that

35



Algorithm ContextualFeatureGeneration(D)
Let CT be a series of contexts for D
CT ← words(D) ∪ sentences(D) ∪ paragraphs(D) ∪ {D}
Let F be a set of features generated for D
F ← ∅
For each context ct ∈ CT perform feature generation:

F ← F ∪ FG(ct)
Represent D as BagOfWords(D) ∪ F

Figure 3.5: Performing feature generation for document D using the multi-resolution
approach

feature generation becomes much more powerful when it operates on the raw
document text. But should the generator always analyze the whole document as
a single unit, as do regular text classifiers?

3.4.1 Analyzing Local Contexts

We believe that considering the document as a single unit can often be misleading:
its text might be too diverse to be readily mapped to the right set of concepts,
while notions mentioned only briefly may be overlooked. Instead, we propose to
partition the document into a series of non-overlapping segments (called contexts),
and then generate features at this finer level. Each context is classified into a
number of concepts in the knowledge base, and pooling these concepts together
to describe the entire document results in multi-faceted classification. This way,
the resulting set of concepts represents the various aspects or sub-topics covered
by the document.

Potential candidates for such contexts are simple sequences of words, or more
linguistically motivated chunks such as sentences or paragraphs. The optimal
resolution for document segmentation can be determined automatically using a
validation set. We propose a more principled multi-resolution approach that si-
multaneously partitions the document at several levels of linguistic abstraction
(windows of words, sentences, paragraphs, up to taking the entire document as
one big chunk), and performs feature generation at each of these levels. We
rely on the subsequent feature selection step (Section 3.4.2) to eliminate extra-
neous features, preserving only those that genuinely characterize the document.
Figure 3.5 presents the feature generation algorithm.

In fact, the proposed approach tackles the two most important problems in
natural language processing, namely, synonymy (the ability of natural languages
to express many notions in more than one way), and polysemy (the property
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of natural language words to convey more than a single sense, while certain
words may have as many as dozens of different, sometimes unrelated senses).
When individual contexts are classified, word sense disambiguation is implicitly
performed, thus resolving word polysemy to some degree. A context that contains
one or more polysemous words is mapped to the concepts that correspond to the
sense shared by the context words. Thus, the correct sense of each word is
determined with the help of its neighbors. At the same time, enriching document
representation with high-level concepts and their generalizations addresses the
problem of synonymy, as the enhanced representation can easily recognize that
two (or more) documents actually talk about related issues, albeit using different
vocabularies.

For each context, the feature generator yields a list of concepts ordered by their
score, which quantifies their appropriateness to the context. A number of top-
scoring concepts are used to actually generate features. For each of these concepts
we generate one feature that represents the concept itself. If the knowledge
repository also defines relations between concepts, these relations can be used for
generating additional features (see Sections 3.5 and 3.6).

3.4.2 Feature Selection

Using support vector machines in conjunction with bag of words, Joachims (1998)
found that SVMs are very robust even in the presence of numerous features. He
further observed that the multitude of features are indeed useful for text cate-
gorization. These findings were corroborated in more recent studies (Rogati and
Yang, 2002; Brank et al., 2002; Bekkerman, 2003) that observed either no im-
provement or even small degradation of SVM performance after feature selection.
Consequently, many later works using SVMs did not apply feature selection at
all (Leopold and Kindermann, 2002; Lewis et al., 2004).

This situation changes drastically as we augment the bag of words with gen-
erated features. First, nearly any technique for automatic feature generation can
easily generate huge numbers of features, which will likely aggravate the “curse
of dimensionality.” Furthermore, it is feature selection that allows the feature
generator to be less than a perfect classifier. When some of the concepts assigned
to the document are correct, feature selection can identify them and seamlessly
eliminate the spurious ones. We further analyze the utility of feature selection in
Section 5.3.5.

Note also that the categories to which the documents are categorized most
likely correspond to a mix of knowledge repository concepts rather than a single
one. Therefore, as the feature generator maps documents to a large set of related
concepts, it is up to feature selection to retain only those that are relevant to the
particular categorization task in hand.
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In a related study (Gabrilovich and Markovitch, 2004) we described a class
of problems where feature selection can improve SVM performance even for a
bag of words. In this work, we formulated the notion of feature redundancy,
and proposed a criterion for quantifying this phenomenon in order to predict the
usefulness of feature selection. Further details can be found in Appendix A.

3.4.3 Feature Valuation

In regular text categorization, each word occurrence in document text is initially
counted as a unit, and then feature valuation is performed, usually by subjecting
these counts to TFIDF weighting (Salton and Buckley, 1988; Debole and Sebas-
tiani, 2003). To augment the bag of words with generated features and to use
a single unified feature set, we need to assign weights to generated features in a
compatible manner.

Each generated feature is assigned the basic weight of 1, as in the single occur-
rence of a word in the bag of words. However, this weight is further multiplied by
the classification score produced for each classified concept by the feature genera-
tor (Score(ci) in Figure 3.4). This score quantifies the degree of affinity between
the concept and the context it was assigned to.

3.4.4 Revisiting the Running Example

Let us revisit the example from Section 1, where we considered a document that
belongs to the “copper” category of Reuters-21578. Figure 3.6 illustrates the pro-
cess of feature generation for this example. While building the feature generator in
the preprocessing stage, our system learns the scope of mining-related ODP cate-
gories such as Business/Mining and Drilling, Science/Technology/Mining

and Business/Industrial Goods and Services/Materials/Metals. These
categories contain related URLs, such as http://www.teckcominco.com and
http://www.miningsurplus.com, which belong to the (now merged) Teck Com-
inco company. The company’s prominence and frequent mention causes the words
“Teck” and “Cominco” to be included in the set of attributes selected to represent
the above categories.

During feature generation, the document is segmented into a sequence of con-
texts The feature generator analyzes these contexts and uses their words (e.g.,
“Teck” and “Cominco”) to map the document to a number of mining-related
concepts in the ODP (e.g., Business/Mining and Drilling). These concepts, as
well as their ancestors in the hierarchy, give rise to a set of generated features that
augment the bag of words. Observe that the training documents for the category
“copper” underwent similar processing when a text classifier was induced. Con-
sequently, features based on these concepts were selected during feature selection
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Figure 3.6: Feature generation example

and retained in document vectors, thanks to their high predictive capacity. It
is due to these features that the document is now categorized correctly, while
without feature generation it consistently caused BOW classifiers to err.

3.5 Using Hierarchically-Structured Knowledge

Repositories

We now elaborate on Requirement 3 (Section 3.2) that allows knowledge repos-
itories to optionally define relations between concepts. The simplest and most
common organization of a set of concepts is using a hierarchical structure, which
establishes an “is-a” relation between concepts. This way, each concept is more
general that all of its children.

The Open Directory Project that we use in this study is an ex-
ample of such knowledge repository. Consider, for instance, the path
Top/Computers/Artificial Intelligence/Machine Learning/Datasets,
which leads to a leaf concept in the ODP tree. In this example, the parent
concept Top/Computers/Artificial Intelligence/Machine Learning

is more general than the leaf concept Datasets, and concept
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Top/Computers/Artificial Intelligence is more general than Ma-

chine Learning. The root concept Top is more general than any other
ODP concept.

Let us now formalize this extended setting. Let c0 be the root concept, which is
more general than any other concept. Let Parent(ci) be a function that uniquely
associates a node with its parent in the hierarchy, whereas Parent(c0) is un-
defined. Let Children(ci) be a function that associates a node with a set of
its children, where for leaf nodes Children(ci) = ∅. When concept ci is more
general than another concept cj, we denote this by ci v cj; this happens when
cj ∈ Children∗(ci), where Children∗ denotes the recursive application of the
function (obviously, ∀j > 0 : c0 v cj). Similarly, let Parent∗(ci) denote the set of
ancestors of ci, obtained through the recursive application of the Parent function
(of course, ∀j > 0 : c0 ∈ Parents∗(cj)).

Two aspects of our methodology can benefit from hierarchical organization
of concepts. First, while building the feature generator, we make use of the text
objects associated with each concept to learn its scope, in order to be able to
assign this concept to documents in text categorization. Hierarchical organiza-
tion allows us to greatly extend the amount of text associated with each concept,
by taking the texts associated with all of the descendants of this concept. This
is possible because the descendants represent more specific concepts, and thus
it makes perfect sense to use their sample texts to enrich the text pool for the
ancestor concept. Thus, for example, if a certain concept ci is only associated
with a few textual objects, we can learn its scope much more reliably by aggre-
gating the textual objects associated with all of its descendants, Children∗(ci).
Figure 3.7 provides pseudocode of the algorithm for building a feature generator
using hierarchically-structured knowledge repositories.

Accumulation of textual objects from the descendants of a con-
cept has implications for attribute selection. Let us denote by Dhier

i

the collection of textual objects of ci and its descendants, Dhier
i =⋃

k=0...mi
ti,k ∪ ⋃

j=0...n s.t. cj∈Children∗(ci)

⋃
k=0...mj

tj,k, and by Dhier
i the collection

of textual objects for all other concepts. Attribute selection now has to identify
attributes from Dhier

i that are most characteristic of ci.

However, there is an additional benefit in using a hierarchical ontology, as
it allows us to perform powerful generalizations during feature construction. As
explained in Section 3.3.2, the default feature construction strategy is to use the
feature generator to map the document text into one or more pertinent concepts
that are classified based on the document text. For the sake of this discussion,
let ct denote a particular document context that undergoes feature construction,
and let it be classified into concepts c1, . . . , cp. In the presence of hierarchical
organization of concepts, we can now map this context to additional concepts,
namely,

⋃
j=1...p Parent∗(cj). That is, the context is also mapped to concepts
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Algorithm BuildFeatureGenerator
# Compute attribute vectors for all concepts
BuildVectors(c0)

# Use an induction algorithm to train a feature generator FG
# using the attribute vectors V ector(ci)
FG ← InduceClassifier({V ector(ci)})

———————————————————————————————-
Algorithm BuildVectors(ci)

Text(ci) = ∅

# Traverse the hierarchy bottom-up, collecting the textual objects
# of the descendants of each concept
For each child cj ∈ Children(ci) do
BuildVectors(cj)
Text(ci) ← Text(ci) ∪ ⋃

k=0...mj
tj,k

# Now add the textual objects for the concept itself
Text(ci) ← Text(ci) ∪ ⋃

k=0...mi
ti,k

# Build the attribute vector by performing attribute selection
# among the words of Text(ci)
V ector(ci) ← AttributeSelection(Text(ci))
# Assign values to the selected attributes
V ector(ci) ← tfidf(V ector(ci))

Figure 3.7: Building a feature generator using hierarchically-structured knowledge
repositories

that are more general than the originally classified ones. Figure 3.8 presents the
extended feature generation algorithm.

When knowledge concepts are organized hierarchically, the feature generation
algorithm can take advantage of such organization. This way, instead of consider-
ing all existing concepts simultaneously, it can work top-down into the hierarchy,
identifying several most suitable concepts at each level, as in the hierarchical text
classifiers described in the literature (Koller and Sahami, 1997; Dumais and Chen,
2000; Ruiz and Srinivasan, 2002). One possible drawback of such approach, how-
ever, is that erroneous decisions made early in the process cannot be corrected
later.
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Algorithm FG(text, distanceMetric, numConcepts)
TextV ector ← tfidf(text)
For each ci ∈ C = {c0, . . . , cn} do

Score(ci) ← distanceMetric(TextV ector, V ector(ci))
Let GeneratedConcepts be a set of numConcepts concepts

with highest Score(ci)

Ancestors ← ∅
For each cj ∈ GeneratedConcepts do

Ancestors ← Ancestors ∪ Parent∗(cj)

Return GeneratedConcepts ∪ Ancestors

Figure 3.8: Feature generation using a hierarchical ontology

3.6 Using Knowledge Repositories that Define

Arbitrary Relations Between Concepts

Knowledge concepts can be subject to many other relations in addition to
generalization. Examples of such relations include meronymy (“part of”) and
holonymy, synonymy, as well as more specific relations such as “capital of”,
“birthplace/birthdate of” etc. A notable example of a knowledge repository
that features such relations is the Wikipedia encyclopedia, where relations are
represented by hypertext links between Wikipedia articles.

As opposed to strict hierarchical organization built on the “is-a” relation, it
makes little sense to use arbitrary relations to enrich the text pool associated
with each concept, as explained in the previous section. However, we can still
use these relations for feature construction. This way, whenever a text fragment
is classified to a certain concept ci, we consider generating features based on
the concepts that stand in some relation to ci. Since different relations might
reflect different strength of connection between concepts, it might be necessary
to quantify this strength in some way, in order to construct features based on
concepts that are truly relevant to the input text.

Figure 3.9 presents the pseudocode of the feature generation algorithm ex-
tended for the case of arbitrary relations.
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Algorithm FG(text, distanceMetric, numConcepts)
TextV ector ← tfidf(text)
For each ci ∈ C = {c0, . . . , cn} do

Score(ci) ← distanceMetric(TextV ector, V ector(ci))
Let GeneratedConcepts be a set of numConcepts concepts

with highest Score(ci)

Related ← ∅
For each cj ∈ GeneratedConcepts do

For each ck such that ∃rl : 〈cj, ck〉 ∈ rl do
If Strength(〈cj, ck〉) > threshold then

Related ← Related ∪ {ck}

Return GeneratedConcepts ∪Related

Figure 3.9: Feature generation with arbitrary relations
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Chapter 4

Instantiation of the Feature
Generation Methodology for the
ODP and Wikipedia

In this Chapter we instantiate our feature generation methodology for two spe-
cific knowledge repositories—the Open Directory Project (ODP, 2006) and the
Wikipedia encyclopedia (Wikipedia, 2006).

4.1 Using the Open Directory for Feature Gen-

eration

We now instantiate the general methodology presented in Section 3 to use the
Open Directory project as a knowledge repository (Gabrilovich and Markovitch,
2005).

The Open Directory comprises a hierarchy of approximately 600,000 nodes
that catalog over 4,000,000 Web sites, each represented by a URL, a title, and
a brief summary of its contents. The directory is organized as a tree where
each node has a title (defined by its location within the directory, e.g., Comput-

ers/Artificial Intelligence), and about one-third of all nodes have a short
textual description. Every ODP node is associated with a collection of URLs to
Web sites cataloged under that node, while each URL has a title and a concise
summary of the corresponding Web site. The project constitutes an ongoing ef-
fort promoted by over 65,000 volunteer editors around the globe, and is arguably
the largest publicly available Web directory.1 Being the result of pro bono work,

1Although the actual size of Yahoo! has not been publicly released in the re-
cent years, it is estimated to be about half the size of the Open Directory. This
estimate is based on brute-force exhaustive crawling of the Yahoo! hierarchy. See
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the Open Directory has its share of drawbacks, such as non-uniform coverage,
duplicate subtrees in different branches of the hierarchy, and sometimes biased
coverage due to peculiar views of the editors in charge. At the same time, how-
ever, ODP embeds a colossal amount of human knowledge in a wide variety of
areas, covering even very specific scientific and technical concepts. Armed with
this knowledge, the ODP-based feature generator constructs new features that
denote ODP categories, and adds them to the bag of words. The augmented fea-
ture space provides text classifiers with a cornucopia of additional information.

4.1.1 Multiplying Knowledge Through Web Crawling

We can use the titles and summaries of the URLs as training examples for learning
the feature generator. Although these descriptions alone constitute a sizeable
amount of information, we devised a way to increase the volume of training data
by several orders of magnitude. We do so by crawling the Web sites pointed at
by all cataloged URLs, and obtain a small representative sample of each site.
Following the scheme introduced by Yang, Slattery, and Ghani (2002), each link
cataloged in the ODP is used to obtain a small representative sample of the target
Web site. To this end, we crawl each cataloged site in the BFS order, starting
from the URL listed in the directory. A predefined number of Web pages are
downloaded, and then concatenated into a synthetic meta-document. This meta-
document, along with the URL title and summary, constitutes the textual object
for that site. Pooling together the meta-documents for all sites associated with
an ODP node gives us a wealth of additional information about it.

4.1.2 Noise Reduction and Attribute Selection

Using so much knowledge requires a host of filtering mechanisms that control the
quality and utility of the generated features. We now describe these mechanisms
in detail. In what follows, we distinguish between structural noise, which is
inherent to the ODP structure, and content noise, which is found in the texts we
obtain through crawling the cataloged URLs.

Structural noise

However elaborate the Open Directory is, it necessarily contains concepts that are
detrimental to feature generation. These include concepts too specific or situated
too deep in the hierarchy, or having too few textual objects to build a represen-
tative attribute vector. It is important to observe, however, that whenever we

http://sewatch.com/reports/directories.html and http://www.geniac.net/odp for
more details.
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prune small concepts, we assign all of their textual content to their parents. Here
again we benefit from the hierarchical organization of the directory, which allows
us to aggregate small fragments of specific knowledge at a higher conceptual level,
where its accumulated mass becomes sufficient to define a more general concept.

We identified the following potential sources of noise in the Open Directory:

1. The branch Top/World concentrates material in languages other than
English. This entire branch is therefore pruned.

2. Some top-level branches contain concepts that are hardly useful for subse-
quent text categorization.

(a) Top/News is a very elaborate subtree devoted to listing numerous
CNN stories on various topics organized by date. The nodes of this
subtree represent past dates, and do not correspond to useful knowl-
edge concepts.

(b) Top/Adult lists adult-oriented Web sites, and we believe that the
concepts of this subtree are of little use for general purpose text cate-
gorization.

(c) Top/Kids and Teens roughly duplicates the structure of the ODP
but only lists resources suitable for children.

All these branches are pruned as well.

3. Overly small categories (usually situated very deep in the hierarchy) that
only contain a handful of URLs, and therefore their scope cannot be learned
reliably. We therefore eliminate categories with fewer than 10 URLs or
those situated below depth level 7 (the textual content of pruned categories
is assigned to their parents).

4. The Top/Regional branch contains approximately one third of the entire
mass of the ODP data, and is devoted to listing English language sites
about various geographical regions of the world. This branch is further
divided into continents, countries and smaller localities, up to the level
of cities, towns and landmarks. However, the hierarchy does not stop at
this level, and for most localities it provides much more elaborate classifi-
cation, similar to that of the higher ODP levels. For example, under the
path Top/Regional/North America/United States/New York/Lo-

calities/N/New York City one finds further subdivisions such as
Arts and Entertainment, Business and Economy, Health, Shopping

and Society and Culture. A similar set of categories duplicating
higher-level notions (Top/Arts, Top/Business etc.) can be also
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found at the state level (i.e., at Top/Regional/North America/

United States/New York).

ODP classification principles2 prescribe that businesses that operate in a
particular locality (in this example, local to the State of New York or to
New York City) should normally be catalogued under the most specific
applicable categories, while businesses with global reach should be cata-
logued somewhere under Top/Business; the rationale for choosing other
categories (e.g., Top/Society/... vs. Top/Regional/North America/

United States/New York/Society and Culture) is similar. However,
we believe that when the ODP is used as a knowledge repository to support
text categorization, such fine-grained distinctions (e.g., architect offices in
Manhattan) are of little use. These categories only pollute the hierarchy
with numerous small nodes, each of which only has a small chance of being
assigned to any given context.

Therefore, we eliminate overly specific categories under Top/Regional by
pruning all paths at the level of geographical names. When the feature
generator operates on a context describing a particular New York business,
it will map the latter to the New York City node, as well as to one or more
appropriate nodes under Top/Business.

5. Web spam, which comes in the form of URLs that are hardly authoritative
or representative of their host category, but are nonetheless included in
the directory by a minority of unscrupulous editors. We do not explicitly
address the problem of spam here, as it lies beyond the scope of our current
study.

Content noise

Texts harvested from the WWW are quite different from clean passages in for-
mal written English, and without adequate noise reduction crawled data may do
more harm than good. To reduce content noise we perform attribute selection as
explained in Section 3.3.1. For example, Table 4.1 shows the top 10 attributes
selected for sample ODP concepts using information gain as the attribute selec-
tion criterion. As we can see, the attributes selected for all the sample concepts
are very intuitive and plausible.

2See http://dmoz.org/guidelines and http://dmoz.org/erz/index.html for general
ODP editorial guidelines, and http://dmoz.org/Regional/faq.html for Regional-specific is-
sues.

3Many crawled Web pages under Top/Regional/Europe/Switzerland contain non-
English material, therefore we observe words like “Schweiz” (German for Switzerland) and “der”
(German masculine definite article), which survived stop words removal that is only performed
for English.
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ODP concept Top 10 selected attributes
Top/Business/Financial Services finance, loan, mortgage, equity,

insurance, lender, bank, investment,
transaction, payment

Top/Computers/Artificial Intelligence neural, artificial, algorithm, intelligence,
AAAI, Bayesian, probability, IEEE,
cognitive, inference

Top/Health/Nutrition nutrition, diet, nutrient, vitamin, dietary,
cholesterol, carbohydrate, intake,
protein, fat

Top/Home/Cooking recipe, sauce, ingredient, soup, salad,
casserole, stew, bake, butter, cook

Top/Recreation/Travel travel, itinerary, trip, destination, cruise,
hotel, tour, adventure, travelogue,
departure

Top/Regional/Europe/Switzerland3 Switzerland, Swiss, Schweiz, und, Suiss,
sie, CHF, der, Zurich, Geneva

Top/Science science, research, scientific, biology,
laboratory, analysis, university, theory,
study, scientist

Top/Shopping/Gifts gift, birthday, occasion, basket, card,
shipping, baby, keepsake, order, wedding

Top/Society/History war, history, military, army, civil,
historian, soldier, troop, politics, century

Top/Sports/Golf golf, golfer, tee, hole, fairway,
tournament, championship, clubhouse,
PGA, par

Table 4.1: Examples of attribute selection using information gain

Learning the Feature Generator

In our current implementation, the feature generator works as a centroid-based
classifier (Han and Karypis, 2000), which represents each category as a centroid
vector of the pool of textual objects associated with it.4 Given a fragment of
text supplied as input for feature generation, the classifier represents it as an
attribute vector in the same space. It then compares this vector to those of all
the concepts, and returns the desired number of best-matching ones. Attribute
vectors are compared using the cosine metric (Zobel and Moffat, 1998); the value

4The centroid classifier offers a simple and efficient way for managing the multitude of
concepts in the Open Directory; additional machine learning techniques suitable for learning
the feature generator have been mentioned in Section 3.3.
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of the metric is treated as the classification score. A number of top-scoring
concepts are retained for each input text as generated features. The feature
generator also performs generalization of these concepts, and constructs features
from the classified concepts per se as well as their ancestors in the hierarchy.

4.1.3 Implementation Details

To evaluate the utility of knowledge-based feature generation, we implemented the
proposed methodology using the Open Directory as a source of world knowledge.
Throughout the experiments we used an ODP snapshot as of April 2004. Crawling
of URLs cataloged in the Open Directory was performed over the period of April–
August 2004. In what follows, we describe the implementation details and design
choices of our system.

Constructing the Feature Generator

All ODP data is publicly available in machine-readable RDF format at
http://rdf.dmoz.org. We used the file structure.rdf.u8, which defines the
hierarchical structure of the directory, as well as provides category names and
descriptions, and the file content.rdf.u8, which associates each category with
a list of URLs, each having a title and a concise summary of the corresponding
Web site. After pruning the Top/World branch, which contains non-English
material, and Top/Adult branch, which lists adult-oriented Web sites, we ob-
tained a collection of over 400,000 concepts and 2,800,000 URLs, organized in
a very elaborate hierarchy with maximum depth of 13 levels and median depth
of 7. Further pruning of too small and deep categories, as well as pruning of
the Top/Regional subtree at the level of geographical names as explained in
Section 4.1.2, reduced the number of concepts to 63,000 (the number of URLs
was not reduced, since the entire URL population from pruned nodes is moved
to their parents).

Titles and summaries of the URLs amounted to 436 Mb of text. In order to
increase the amount of information available for training the feature generator, we
further populated the ODP hierarchy by crawling all of its URLs, and taking the
first 10 pages (in the BFS order) encountered at each site to create a representative
meta-document of that site. As an additional noise removal step, we discarded
meta-documents containing fewer than 5 distinct terms. This operation yielded
425 Gb worth of HTML files. After eliminating all the markup and truncating
overly long files at 50 Kb, we ended up with 70 Gb of additional textual data.
Compared to the original 436 Mb of text supplied with the hierarchy, we obtained
over a 150-fold increase in the amount of data.

Applying our methodology to a knowledge repository of this scale required an
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enormous engineering effort. After tokenization and removal of stop words, num-
bers and mixed alphanumeric strings (e.g., “Win2k” or “4Sale”), we obtained
20,800,000 distinct terms. Further elimination of rare words (occurring in less
than 5 documents) and applying the Porter stemming algorithm (Porter, 1980)
resulted in a more manageable number of 2,900,000 distinct terms that were used
to represent ODP nodes as attribute vectors. Up to 1000 most informative at-
tributes were selected for each ODP node using the Document Frequency criterion
(other commonly used feature selection techniques, such as Information Gain, χ2

and Odds Ratio (Yang and Pedersen, 1997; Rogati and Yang, 2002; Mladenic,
1998a), yielded slightly inferior results in text categorization).

In order to speed up consequent classification of document contexts, we also
built an inverted index that, given a word, provides a list of concepts that have
it in their attribute vector (i.e., the word has been selected for this concept).

When assigning weights to individual entries in attribute vectors, we took into
consideration the location of original word occurrences. For example, words that
occurred in URL titles were assigned higher weight than those in the summaries.
Words originating from the summaries or meta-documents corresponding to links
prioritized5 by the ODP editors were also assigned additional weight. We com-
pletely ignored node descriptions since these are only available for about 40% of
the nodes, and even then the descriptions are rarely used to actually describe
the corresponding concept; in many cases they just contain instructions to the
editors or explain what kinds of sites should not be classified under the node.

Finally, the set of attribute vectors undergoes tf.idf weighting, and serves for
building a centroid-based feature generator.

4.2 Using Wikipedia for Feature Generation

From time immemorial, the human race strived to organize its collective knowl-
edge in a single literary work. From “Naturalis Historiae” by Pliny the Elder
to the contemporary mammoth “Encyclopaedia Britannica”, encyclopedias have
been major undertakings to systematically assemble all the knowledge available
to the mankind.

Back in the early years of AI research, Buchanan and Feigenbaum (1982) for-
mulated the knowledge as power hypothesis, which postulated that “The power of
an intelligent program to perform its task well depends primarily on the quantity
and quality of knowledge it has about that task.” Lenat et al. (1990) argued
that without world knowledge computer programs are very brittle, and can only

5ODP editors can highlight especially prominent and important Web sites; sites marked as
such appear at the top of category listings and are emphasized with an asterisk (in RDF data
files, the corresponding links are marked up with a <priority> tag).
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carry out tasks that have been fully foreseen by their designers.

When computer programs face tasks that require human-level intelligence, it
is only natural to use an encyclopedia to endow the machine with the breadth of
knowledge available to humans. There are, however, several obstacles on the way
to using encyclopedic knowledge. First, such knowledge is available in textual
form, and using it requires natural language understanding, a major problem
in its own right. Furthermore, language understanding may not be enough, as
texts written for humans normally assume the reader possesses a large amount
of common-sense knowledge, which is omitted even from most detailed encyclo-
pedia articles (Lenat, 1997). To address this situation, Lenat and his colleagues
launched the CYC project, which aims to explicitly catalog the common sense
knowledge of the humankind.

In this thesis we propose and evaluate a way to render text categorization
systems with true encyclopedic knowledge, based on the largest encyclopedia in
existence—Wikipedia.

Let us illustrate the importance of encyclopedic knowledge with a couple
of examples. Given a very brief news title “Bernanke takes charge”, a casual
observer can infer little information from it. However, using the algorithm we
developed for consulting Wikipedia, we find out the following relevant concepts:
Ben Bernanke, Federal Reserve, Chairman of the Federal Reserve,
Alan Greenspan (Bernanke’s predecessor), Monetarism (an economic theory
of money supply and central banking), inflation and deflation. As another
example, consider the title “Apple patents a Tablet Mac”. Unless the reader is
well-versed in the hi-tech industry and gadgets, she will likely find it hard to
predict the contents of the news item. Using Wikipedia, we identify the follow-
ing related concepts: Mac OS (the Macintosh operating system) Laptop (the
general name for portable computers, of which Tablet Mac is a specific example),
Aqua (the GUI of Mac OS X), iPod (another prominent product by Apple),
and Apple Newton (the name of Apple’s early personal digital assistant).

Observe that documents manipulated by a text categorization system are
given in the same form as the encyclopedic knowledge we intend to use—plain
text. Therefore, we can use text similarity algorithms to automatically identify
encyclopedia articles relevant to each document, and then leverage the knowledge
gained from these articles in subsequent processing. It is this key observation that
allows us to circumvent the obstacles we enumerated above, and use encyclope-
dia directly, without the need for deep language understanding or pre-cataloged
common-sense knowledge. Also, it is essential to note that we do not use encyclo-
pedia to simply increase the amount of the training data for text categorization;
neither do we use it as a text corpus to collect word cooccurrence statistics.
Rather, we use the knowledge distilled from the encyclopedia to enrich the rep-
resentation of documents, so that a text categorizer is induced in the augmented,
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knowledge-rich feature space.

4.2.1 Wikipedia as a Knowledge Repository

What kind of knowledge repository should be used for feature generation? In the
previous section, we assumed the external knowledge is available in the form of
a generalization hierarchy, and used the Open Directory Project as an example.
This method, however, had a number of drawbacks, which can be corrected by
using Wikipedia.

First, requiring the knowledge repository to define an “is-a” hierarchy limits
the choice of appropriate repositories. Moreover, hierarchical organization em-
bodies only one particular relation between the nodes (generalization), while nu-
merous other relations, such as relatedness or meronymy/holonymy, are ignored.
Second, large-scale hierarchies tend to be extremely unbalanced, so that the rela-
tive size of some branches is disproportionately large or small due to peculiar views
of the editors. Such phenomena are indeed common in the ODP. For example,
the Top/Society branch is heavily dominated by one of its children—Religion

and Spirituality; the Top/Science branch is dominated by its Biology child;
a considerable fraction of the mass of Top/Recreation is concentrated in Pets.
Finally, to learn the scope of every ODP concept, short URL summaries associ-
ated with the concepts were augmented by crawling the URLs themselves. This
procedure allowed us to accumulate many gigabytes worth of textual data, but
at a price, as texts obtained from the Web are often quite far from formal writing
and plagued with noise. Crawling a typical Web site often brings auxiliary ma-
terial that has little to do with the site theme, such as legal disclaimers, privacy
statements, and help pages.

In this section we propose to perform feature generation using Wikipedia,
which is currently the largest knowledge repository on the Web (Gabrilovich
and Markovitch, 2006b). Wikipedia is available in dozens of languages, while
its English version is the largest of all, containing 300+ million words in
nearly one million articles contributed by over 160,000 volunteer editors. For
the sake of comparison, the other well-known encyclopedia, Britannica, is
about an order of magnitude smaller, with 44 million words in 65,000 articles
(http://store.britannica.com, visited on February 10, 2006).

Compared to the ODP, Wikipedia possesses several advantageous properties.
First, its articles are much cleaner than typical Web pages, and mostly qualify as
standard written English. Although Wikipedia offers several orthogonal browsing
interfaces, their structure is fairly shallow, and we propose to treat Wikipedia as
having essentially no hierarchy. This way, mapping documents onto relevant
Wikipedia concepts yields truly multi-faceted classification of the document text,
and avoids the problem of unbalanced hierarchy branches. Moreover, by not
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requiring the knowledge repository to be hierarchically organized, our approach
is suitable for new domains, for which no ontology is available. Finally, Wikipedia
articles are heavily cross-linked, in a way reminiscent of linking on the Web. We
believe that these links encode many interesting relations between the concepts,
and constitute an important source of information in addition to the article texts.
We explore using inter-article links in Section 4.2.3.

4.2.2 Feature Generator Design

Although Wikipedia has almost a million articles, not all of them are equally
useful for feature generation. Some articles correspond to overly specific concepts
(e.g., Metnal, the ninth level of the Mayan underworld), or are otherwise un-
likely to be useful for subsequent text categorization (e.g., specific dates or a list
of events in a particular year). Other articles are just too short, so we cannot reli-
ably classify texts onto the corresponding concepts. We developed a set of simple
heuristics for pruning the set of concepts, by discarding articles that have fewer
than 100 non stop words or fewer than 5 incoming and outgoing links. We also
discard articles that describe specific dates, as well as Wikipedia disambiguation
pages.

The feature generator performs classification of texts onto Wikipedia concepts.
Observe that input texts are given in the same form as Wikipedia articles, that
is, in the form of plain text. Therefore, we can use conventional text classification
algorithms (Sebastiani, 2002) to rank the concepts represented by these articles
according to their relevance to the given text fragment. It is this key observation
that allows us to use encyclopedia directly, without the need for deep language
understanding or pre-cataloged common-sense knowledge.

However, this is a very peculiar classification problem with hundreds of thou-
sands of classes, each having a single positive example—the article text. Conven-
tional induction techniques can hardly be applied in these settings, so we opted
to use a simple and efficient centroid classifier (Han and Karypis, 2000), which
represents each concept with an attribute vector of the article text.

When using a centroid classifier, it is essential to perform attribute selection
to reduce noise. However, since we only have a single article for each concept,
standard attribute selection techniques cannot be applied, so we postpone noise
control to the next step. Each concept is represented as an attribute vector,
whose entries are assigned weights using a tf.idf scheme (Debole and Sebastiani,
2003). Then, we build an inverted index that maps each attribute into a list
of concepts in which it appears. The primary purpose of inverted index is to
speed up vector matching. In addition to that we use it to discard insignificant
associations between attributes and concepts. This is done by removing those
concepts whose weights for a given attribute are too low. This scheme allows
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us to circumvent the scarceness of text objects for each concept—we cast the
problem of attribute selection per concept as concept selection per attribute.

4.2.3 Using the Link Structure

It is only natural for an electronic encyclopedia to provide cross-references in the
form of hyperlinks. As a result, a typical Wikipedia article has many more links
to other entries than articles in conventional printed encyclopedias.

This link structure can be used in several ways. Observe that each link is
associated with an anchor text (clickable highlighted phrase). The anchor text
is not always identical to the canonical name of the target article, and differ-
ent anchor texts are used to refer to the same article in different contexts. For
example, anchor texts pointing at Federal Reserve include “Fed”, “U.S. Fed-
eral Reserve Board”, “U.S. Federal Reserve System”, “Board of Governors of the
Federal Reserve”, “Federal Reserve Bank”, “foreign reserves” and “Free Banking
Era”. Thus, anchor texts provide alternative names, variant spellings, and re-
lated phrases for the target concept, which we use to enrich the article text for
the target concept.

Similarly to the WWW, incoming links contribute to the significance of an
article. Indeed, the highest number of incoming links—over 100,000—point at the
article United States. We use the number of incoming links to express a slight
preference for more significant concepts in feature generation, by multiplying the
FG score of each concept by log(log(number of incoming links)).

Finally, inter-article links often reflect important relations between concepts
that correspond to the linked articles. We evaluate the use of such relations for
feature generation in the next section.

Inter-article Links as Concept Relations

As a rule, the presence of a link implies some relation between the concepts it
connects. For example, the article on the United States links to Washing-
ton, D.C. (country capital) and North America (the continent where the
country is situated). It also links to a multitude of other concepts, which are
definitely related to the source concept, albeit it is more difficult to define those
relations; examples include United States Declaration of Independence,
President of the United States, and Elvis Presley.

Let us briefly recap the way we would like to use inter-concept relations for
feature generation. Let ct be a text fragment, and let it be mapped by the
feature generator to a sequence of concepts Cct = c1, . . . , cp. We would like to
generate additional features for ct, based on concepts that stand in some rela-
tion to Cct. When using Wikipedia, it is therefore logical to consider generating
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features based on concepts that are linked from the articles corresponding to the
initially classified concepts, namely, Cct. This way, we will generate features using
the knowledge encoded in the links connecting the concepts.

However, our observations reveal that the existence of a link does not always
imply the two articles are strongly related.6 In fact, many words and phrases
in a typical Wikipedia article link to other articles just because there are entries
for the corresponding concepts. For example, the Education subsection in the
article on the United States has gratuitous links to concepts High school,
College, and Literacy rate.

Therefore, in order to use Wikipedia links for feature generation, it is essential
to filter the linked concepts according to their relevance to the context. To this
end, we examine the related concepts linked to those in Cct, and retain those with
highest scores for the original context ct. If a newly considered concept is linked
to more than one concept in Cct, its FG score is multiplied accordingly. Finally,
the desired number of highest-scoring related concepts is retained to produce
additional features. Figure 4.1 illustrates the proposed algorithm.

Concept generality filter

Recall that when using the Open Directory, we generated additional features that
were by definition more general than the originally classified ones. Wikipedia
provides numerous relations in addition to the simple “is-a”, but are features
constructed from them equally useful for text categorization?

Relevance of the newly constructed features is certainly important, but is not
the only criterion. Suppose that we are given an input text “Google search”.
Which additional feature is likely to be more useful: Nigritude ultramarine (a
specially crafted meaningless phrase used in a search engine optimization contest)
or Website? Now suppose the input is “artificial intelligence”—which feature is
likely to contribute more to the representation of this input, John McCarthy

(computer scientist) or Logic? We believe that in both examples, the second
feature would be more useful because it is not overly specific.

Consequently, we conjecture that in text categorization we should generate
additional link-based features sparingly, taking only those features that are “more
general” than those that triggered them. But how can we judge the generality
of concepts? While this may be tricky to achieve in the general case (no pun
intended), we propose the following task-oriented criterion. Given two concepts
ca and cb, we compare the numbers of links pointing at them. Then, we say that
ca is “more general” than cb if its number of incoming links is at least an order
of magnitude larger, that is, if log10(#inlinks(ca))− log10(#inlinks(cb)) > 1.

6The opposite is also true—the absence of a link may simply be due to an oversight. Adafre
and de Rijke (2005) studied the problem of discovering missing links in Wikipedia.
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Algorithm FG(ct, distanceMetric, numConcepts, numSearched,
numExamined, numRelated)

TextV ector ← tfidf(ct)
For each ci ∈ C = {c0, . . . , cn} do

Score(ci) ← distanceMetric(TextV ector, V ector(ci))
Let Generated be a set of numConcepts concepts with highest Score(ci)
Let Searched be a set of numSearched concepts with highest Score(ci)
Let Examined be a set of numExamined concepts with highest Score(ci)

Let Links = {〈ca, cb〉} be a set of links between Wikipedia concepts
For each ck ∈ Searched do

RelWeight(ck) ← 0
For each cj ∈ Examined do

For each ck such that 〈cj, ck〉 ∈ Links do
If ck ∈ Searched then

RelWeight(ck) ← RelWeight(ck) + Score(ck)

Let Related be a set of numRelated concepts with highest RelWeight(ck)
Return Generated ∪Related

Figure 4.1: Feature generation with Wikipedia links as relations

Figure 4.2 illustrates the algorithm that only generates more general features.
We use boldface font to highlight the difference from the previous version.

We show examples of additional features generated using inter-article links in
Section 5.4.1. In Section 5.4.5 we report the results of using inter-article links
for feature generation. In that section we also specifically examine the effect of
constructing features from concepts that are more general than the concepts that
triggered them.

4.2.4 Implementation Details

We used Wikipedia snapshot as of November 11, 2005. After parsing the
Wikipedia XML dump, we obtained 1.8 Gb of text in 910,989 articles. Upon re-
moving small and overly specific concepts that have fewer than 100 words, fewer
than 5 incoming or outgoing links, category pages, disambiguation pages and the
like, 171,332 articles were left that defined concepts used for feature generation.
We processed the text of these articles by first tokenizing it, removing stop words
and rare words (occurring in fewer than 3 articles), and stemmed the remaining
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Algorithm FG(ct, distanceMetric, numConcepts, numSearched,
numExamined, numRelated)

TextV ector ← tfidf(ct)
For each ci ∈ C = {c0, . . . , cn} do

Score(ci) ← distanceMetric(TextV ector, V ector(ci))
Let Generated be a set of numConcepts concepts with highest Score(ci)
Let Searched be a set of numSearched concepts with highest Score(ci)
Let Examined be a set of numExamined concepts with highest Score(ci)

Let Links = {〈ca, cb〉} be a set of links between Wikipedia concepts
For each ck ∈ Searched do

RelWeight(ck) ← 0
For each cj ∈ Examined do

For each ck such that 〈cj, ck〉 ∈ Links do
If ck ∈ Searched then
If log10(#inlinks(ck))− log10(#inlinks(cj)) > 1 then

RelWeight(ck) ← RelWeight(ck) + Score(ck)

Let Related be a set of numRelated concepts with highest RelWeight(ck)
Return Generated ∪Related

Figure 4.2: Feature generation with Wikipedia links as relations, where only more
general features are constructed

words; this yielded 296,157 distinct terms, which were used to represent concepts
as attribute vectors.

Preprocessing of Wikipedia XML dump

Wikipedia data is publicly available online at http://download.wikimedia.org.
All the data is distributed in XML format, and several packaged versions are
available: article texts, edit history, list of page titles, interlanguage links etc. In
this project, we only use the article texts, but ignore the information on article
authors and page modification history. Before building the feature generator, we
perform a number of operations on the distributed XML dump:

• We simplify the original XML by removing all those fields that are not used
in feature generation, such as author ids and last modification times.

• Wikipedia syntax defines a proprietary format for inter-article links,
whereas the name of the article referred to is enclosed in brackets (e.g.,
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“[United States]”). We map all articles to numeric ids, and for each ar-
ticle build a list of ids of the articles it refers to. We also count the number
of incoming and outgoing links for each article.

• Wikipedia defines a redirection mechanism, which maps frequently used
variant names of entities into canonical names. For examples, United
States of America is mapped to United States. We resolve all such
redirections during initial preprocessing.

• Another frequently used mechanism is templates, which allows articles to in-
clude frequently reused fragments of text without duplication, by including
pre-defined and optionally parameterized templates on the fly. To speed up
subsequent processing, we resolve all template inclusions at the beginning.

• We also collect all anchor texts that point at each article.

This preprocessing stage yields a new XML file, which is then used for building
the feature generator.

Inverted Index Pruning

The algorithm for pruning the inverted index operates as follows. We first sort all
the concepts for a given word according to their tf.idf weights in the decreasing
order. We then scan the resulting sequence of concepts with a sliding window
of length 100, and truncate the sequence when the difference in scores between
the first and last concepts in the window drops below 5% of the highest-scoring
concept for this word (which is positioned first in the sequence).
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Chapter 5

Empirical Evaluation of Feature
Generation for Text
Categorization

In this chapter we evaluate the benefits of using external knowledge for text
categorization.

5.1 Test Collections

We used the following test collections to evaluate our methodology.

5.1.1 Reuters-21578

This data set contains one year worth of English-language stories distributed
over the Reuters newswire in 1986–1987, and is arguably the most often used
test collection in text categorization research. Reuters-21578 is a cleaned version
of the earlier release named Reuters-22173, which contained errors and duplicate
documents.

The collection contains 21578 documents (hence the name) in SGML for-
mat. Of those, 12902 documents are categorized, i.e., assigned a category label or
marked as not belonging to any category. Other documents do not have an ex-
plicit classification; that is, they can reasonably belong to some categories (judged
by their content), but are not marked so. Several train/test splits of the collection
has been defined, of which ModApte (Modified Apte) is the most commonly used
one. The ModApte split divides the collection chronologically, and allocates the
first 9603 documents for training, and the rest 3299 documents for testing.

The documents are labeled with 118 categories; there are 0–16 labels per doc-
ument, with the average of 1.04. The category distribution is extremely skewed:
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the largest category (“earn”) has 3964 positive examples, while 16 categories have
only one positive example. Several category sets were defined for this collection:

• 10 largest categories (“earn”, “acq”, “money-fx”, “grain”, “crude”, “trade”,
“interest”, “ship”, “wheat”, “corn”).

• 90 categories with at least one document in the training set and one in the
testing set (Yang, 2001).

• Galavotti, Sebastiani, and Simi (2000) used a set of 115 categories with at
least one training example (three categories, “cottonseed”, “f-cattle” and
“sfr” have no training examples under the ModApte split).

• The full set of 118 categories with at least one positive example either in
the training or in the testing set.

Following common practice, we used the ModApte split and two category
sets, 10 largest categories and 90 categories with at least one training and testing
example.

5.1.2 20 Newsgroups (20NG)

The 20 Newsgroups collection (Lang, 1995) is comprised of 19997 postings to 20
Usenet newsgroups. Most documents have a single label, defined as the name
of the newsgroup it was sent to; about 4% of documents have been cross-posted,
and hence have several labels. Each newsgroup contains exactly 1000 positive
examples, with the exception of “soc.religion.christian” which contains 997 doc-
uments.

Some categories are quite close in scope, for example, “comp.sys.ibm.pc.-
hardware” and “comp.sys.mac.hardware”, or “talk.religion.misc” and “soc.reli-
gion.christian”. A document posted to a single newsgroup may be reasonably
considered appropriate for other groups too (the author may have simply not
known of other similar groups, and thus not cross-posted the message); this nat-
urally poses additional difficulty for classification.

It should be noted that Internet news postings are very informal, and therefore
the documents frequently contain non-standard and abbreviated words, foreign
words, and proper names, as well as a large amount of markup characters (used
for attribution of authorship or for message separation).

5.1.3 Movie Reviews

The Movie Reviews collection (Pang, Lee, and Vaithyanathan, 2002) represents a
slightly different classification task than standard text categorization, referred to
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as sentiment classification. The collection contains 1400 reviews of movies, half
of which express positive sentiment (opinion) about the movie, and half nega-
tive. The reviews were collected from the “rec.arts.movies.reviews” newsgroup,
archived at the Internet Movie Database (IMDB, http://www.imdb.com). The
classification problem in this case is to determine the semantic orientation of
the document, rather than to relate its content to one of the predefined topics.
This problem is arguably more difficult than topical text categorization, since
the notion of semantic orientation is quite general. We saw this collection as an
opportunity to apply feature generation techniques to this new task.

Recent works on semantic orientation include (Turney and Littman, 2002;
Turney, 2002; Pang, Lee, and Vaithyanathan, 2002).1 The two former studies
used unsupervised learning techniques based on latent semantic indexing, esti-
mating semantic distance between a given document and two reference words
that represent polar opinions, namely, “excellent” and “poor”. The latter work
used classical TC techniques.

5.1.4 Reuters Corpus Version 1 (RCV1)

RCV1 is the newest corpus released by Reuters (Lewis et al., 2004; Rose, Steven-
son, and Whitehead, 2002). It is considerably larger than its predecessor, and
contains over 800,000 news items, dated between August 20, 1996 and August
19, 1997. The stories are labeled with 3 category sets, Topics, Industries and
Regions.

• Topics are most close in nature to the category set of the old Reuters
collection (Reuters-21578). There are 103 topic codes, with 3.24 categories
per document on the average. The topics are organized in a hierarchy, and
the Hierarchy Policy required that if a category is assigned to a document,
all its ancestors in the hierarchy should be assigned as well. As a result,
as many as 36% of all Topic assignments are due to the four most general
categories, CCAT, ECAT, GCAT, and MCAT. Consequently, the micro-
averaged performance scores are dominated by these categories (Lewis et

1The field of genre classification, which attempts to establish the genre of document, is some-
what related to sentiment classification. Examples of possible genres are radio news transcripts
and classified advertisements. The work by Dewdney, VanEss-Dykema, and MacMillan (2001)
cast this problem as text categorization, using presentation features in addition to words. Their
presentation features included part of speech tags and verb tenses, as well as mean and vari-
ance statistics of sentence and word length, punctuation usage, and the amount of whitespace
characters. Using support vector machines for actual classification, the authors found that the
performance due to the presentation features alone was at least as good as that achieved with
plain words, and that the combined feature set usually resulted in an improvement of several
percentage points.
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al., 2004), and macro-averaging becomes of interest.2 The Minimum Code
Policy required that each document was assigned at least one Topic and
one Region code.

• Industries are more fine-grained than Topics, and are therefore harder for
classification. These categories are also organized in a hierarchy, although
the Hierarchy Policy was only partially enforced for them.

• Region codes correspond to geographical places, and are further subdivided
into countries, regional groupings and economic groupings. Lewis et al.
(2004) argue that Region codes might be more suitable for named entity
recognition than for text categorization.

As noted by Lewis et al. (2004), the original RCV1 distribution contains a
number of errors; in particular, there are documents that do not conform to either
Minimum Code or Hierarchy Policy, or labeled with erratic codes. Lewis et al.
(2004) proposed a procedure to correct these errors, and defined a new version of
the collection, named RCV1-v2 (as opposed to the original distribution, referred
to as RCV1-v1 ). All our experiments are based on RCV1-v2.

In our experiments we used Topic and Industry categories. Due to the sheer
size of the collection, processing all the categories in each set would take unrea-
sonably long, allowing us to conduct only few experiments. Following the scheme
introduced by Brank et al. (2002), we used 16 Topic and 16 Industry categories,
which constitute a representative sample of the full groups of 103 and 354 cate-
gories, respectively. We also randomly sampled the Topic and Industry categories
into 5 sets of 10 categories each. Table 5.1 gives the full definition of the category
sets we used. To further speed up experimentation, we used a subset of the cor-
pus with 17,808 training documents (dated August 20–27, 1996) and 5341 testing
documents (dated August 28–31, 1996).

5.1.5 OHSUMED

OHSUMED (Hersh et al., 1994) is a subset of the MEDLINE database, which
contains 348,566 references to documents published in medical journals over the
period of 1987–1991. Each reference contains the publication title, and about
two-thirds (233,445) also contain an abstract. Each document is labeled with
several MeSH categories (MeSH, 2003). There are over 14,000 distinct categories
in the collection, with an average of 13 categories per document. OHSUMED is
frequently used in information retrieval and text categorization research.

2This is why micro-averaged scores for Topic codes are so much higher than macro-averaged
ones, see Section 5.2.2.
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Set name Categories comprising the set
Topic-16 e142, gobit, e132, c313, e121, godd, ghea, e13, c183, m143,

gspo, c13, e21, gpol, m14, c15
Topic-10A e31, c41, c151, c313, c31, m13, ecat, c14, c331, c33
Topic-10B m132, c173, g157, gwea, grel, c152, e311, c21, e211, c16
Topic-10C c34, c13, gtour, c311, g155, gdef, e21, genv, e131, c17
Topic-10D c23, c411, e13, gdis, c12, c181, gpro, c15, g15, c22
Topic-10E c172, e513, e12, ghea, c183, gdip, m143, gcrim, e11, gvio
Industry-16 i81402, i79020, i75000, i25700, i83100, i16100, i1300003, i14000,

i3302021, i8150206, i0100132, i65600, i3302003, i8150103,
i3640010, i9741102

Industry-10A i47500, i5010022, i3302021, i46000, i42400, i45100, i32000, i81401,
i24200, i77002

Industry-10B i25670, i61000, i81403, i34350, i1610109, i65600, i3302020, i25700,
i47510, i9741110

Industry-10C i25800, i41100, i42800, i16000, i24800, i02000, i34430, i36101,
i24300, i83100

Industry-10D i1610107, i97400, i64800, i0100223, i48300, i81502, i34400, i82000,
i42700, i81402

Industry-10E i33020, i82003, i34100, i66500, i1300014, i34531, i16100, i22450,
i22100, i42900

Table 5.1: Definition of RCV1 category sets used in the experiments

Following Joachims (1998), we used a subset of documents from 1991 that have
abstracts, taking the first 10,000 documents for training and the next 10,000 for
testing. To limit the number of categories for the experiments, we randomly
generated 5 sets of 10 categories each. Table 5.2 gives the full definition of the
category sets we used.

5.1.6 Short Documents

We conjectured that knowledge-based feature generation should be particularly
beneficial for categorization of short documents. To verify this conjecture, we
derived several datasets of short documents from the test collections described
above. Recall that about one-third of OHSUMED documents have titles but no
abstract, and can therefore be considered short documents “as-is.” We used the
same range of documents as defined in Section 5.1.5, but considered only those
without abstracts; this yielded 4,714 training and 5,404 testing documents. For
all other datasets, we created a short document from each original document by
taking only the title of the latter (with the exception of Movie Reviews, where
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Set name Categories comprising the set
(parentheses contain MeSH identifiers)

OHSUMED-10A B-Lymphocytes (D001402);
Metabolism, Inborn Errors (D008661);
Creatinine (D003404); Hypersensitivity (D006967);
Bone Diseases, Metabolic (D001851); Fungi (D005658);
New England (D009511); Biliary Tract (D001659);
Forecasting (D005544); Radiation (D011827)

OHSUMED-10B Thymus Gland (D013950); Insurance (D007341);
Historical Geographic Locations (D017516);
Leukocytes (D007962); Hemodynamics (D006439);
Depression (D003863); Clinical Competence (D002983);
Anti-Inflammatory Agents, Non-Steroidal (D000894);
Cytophotometry (D003592); Hydroxy Acids (D006880)

OHSUMED-10C Endothelium, Vascular (D004730);
Contraceptives, Oral, Hormonal (D003278);
Acquired Immunodeficiency Syndrome (D000163);
Gram-Positive Bacteria (D006094); Diarrhea (D003967);
Embolism and Thrombosis (D016769);
Health Behavior (D015438); Molecular Probes (D015335);
Bone Diseases, Developmental (D001848);
Referral and Consultation (D012017)

OHSUMED-10D Antineoplastic and Immunosuppressive Agents (D000973);
Receptors, Antigen, T-Cell (D011948);
Government (D006076); Arthritis, Rheumatoid (D001172);
Animal Structures (D000825); Bandages (D001458);
Italy (D007558); Investigative Techniques (D008919);
Physical Sciences (D010811); Anthropology (D000883)

OHSUMED-10E HTLV-BLV Infections (D006800);
Hemoglobinopathies (D006453); Vulvar Diseases (D014845);
Polycyclic Hydrocarbons, Aromatic (D011084);
Age Factors (D000367); Philosophy, Medical (D010686);
Antigens, CD4 (D015704);
Computing Methodologies (D003205);
Islets of Langerhans (D007515); Regeneration (D012038)

Table 5.2: Definition of OHSUMED category sets used in the experiments

66



documents have no titles).

It should be noted, however, that substituting a title for the full document
is a poor man’s way to obtain a collection of classified short documents. When
documents were originally labeled with categories, the human labeller saw each
document in its entirety. In particular, a category might have been assigned to a
document on the basis of facts mentioned in its body, even though the informa-
tion may well be missing from the (short) title. Thus, taking all the categories
of the original documents to be “genuine” categories of the title is often mislead-
ing. However, because we know of no publicly available test collections of short
documents, we decided to construct datasets as explained above. Importantly,
OHSUMED documents without abstracts have been classified as such by humans;
working with the OHSUMED-derived dataset can thus be considered a “pure”
experiment.

5.1.7 Automatic Acquisition of Data Sets

Although numerous works studied text categorization in the past, good test col-
lections are by far less abundant. In part, this scarcity can be attributed to
the huge manual effort required to collect a sufficiently large body of text, cat-
egorize it, and ultimately produce in a machine-readable format (usually XML
or SGML). Most works use the Reuters-21578 collection (Reuters, 1997) as the
primary benchmark. Others use 20 Newsgroups (Lang, 1995) and OHSUMED
(Hersh et al., 1994), while TREC3 filtering experiments often use the data from
the TIPSTER corpus.

Although the Reuters corpus became a standard reference in the field, it has
a number of significant shortcomings. According to Dumais and Chen (2000),
“the Reuters collection is small and very well organized compared with many
realistic applications”. Scott (1998) also notes that the Reuters corpus has a
very restricted vocabulary, since Reuters in-house style prescribes using uniform
unambiguous terminology to facilitate quick comprehension. As a consequence,
good classifiers (e.g., SVM or KNN) yield very reasonable performance even using
a simple bag-of-words approach, without the need for more elaborate features.

Mainly due to these achievements in Reuters classification, Sebastiani (2002)
notes that “[automated TC] has reached effectiveness levels comparable to those
of trained professionals . . . and, more importantly, it is unlikely to be improved
substantially by the progress of research”. While this argument might be appro-
priate for the Reuters-21578 corpus, we believe it does not apply to the general
case. For example, the state of the art performance on the OHSUMED collection

3Text REtrieval Conferences administered by the U.S. National Institute of Science and
Technology (NIST).
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is only around 50–60% (Yang, 2001; Yang, 1999). We believe that the perfor-
mance of TC on more representative real-life corpora still has way to go. The
recently introduced new Reuters corpus (RCV1), which features very large size
and three orthogonal label sets definitely constitutes a new challenge. At the
same time, acquisition of additional corpora suitable for TC research remains a
major challenge.

To this end, as a part of this research we developed a methodology for auto-
matic acquisition of labeled datasets for text categorization. This methodology
allows one to define a set of parameters in order to generate datasets with desired
properties, based on the Open Directory. We present and evaluate this method-
ology in Appendix B. It is essential to note that since these datasets have been
derived from the Open Directory, we cannot use them to test the effect of using
the ODP for feature generation. Indeed, we did not use these datasets to evaluate
our feature generation methodology. In Appendix A we used these datasets in a
study of feature selection.

5.2 Experimentation Procedure

We used support vector machines4 as our learning algorithm to build text cate-
gorizers, since prior studies found SVMs to have the best performance for text
categorization (Sebastiani, 2002; Dumais et al., 1998; Yang and Liu, 1999). Fol-
lowing established practice, we use the precision-recall break-even point (BEP)
to measure text categorization performance. For the two Reuters datasets and
OHSUMED we report both micro- and macro-averaged BEP, since their cate-
gories differ in size significantly. Micro-averaged BEP operates at the document
level and is primarily affected by categorization performance on larger categories.
On the other hand, macro-averaged BEP averages results for individual cate-
gories, and thus small categories with few training examples have large impact
on the overall performance.

For both Reuters datasets (Reuters-21578 and RCV1) and OHSUMED we
used a fixed train/test split as defined in Section 5.1, and consequently used
macro sign test (S-test) (Yang and Liu, 1999) to assess the statistical significance
of differences in classifier performance. For 20NG and Movies we performed 4-fold
cross-validation, and used paired t-test to assess the significance. We also used
the Wilcoxon signed-ranks test (Demsar, 2006) to compare the baseline and the
FG-based classifiers over multiple data sets.

4We used the SVM light implementation (Joachims, 1999a).
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5.2.1 Text Categorization Infrastructure

We conducted the experiments using a text categorization platform of our
own design and development named Hogwarts 5 (Davidov, Gabrilovich, and
Markovitch, 2004). We opted to build a comprehensive new infrastructure for
text categorization, as surprisingly few software tools are publicly available for
researchers, while those that are available allow only limited control over their
operation. Hogwarts facilitates full-cycle text categorization including text pre-
processing, feature extraction, construction, selection and valuation, followed by
actual classification. The system currently provides XML parsing, part-of-speech
tagging (Brill, 1995), sentence boundary detection, stemming (Porter, 1980),
WordNet (Fellbaum, 1998) lookup, a variety of feature selection algorithms, and
tf.idf feature weighting schemes. Hogwarts has over 250 configurable parame-
ters that control its modus operandi in minute detail. Hogwarts interfaces with
SVM, KNN and C4.5 text categorization algorithms, and computes all standard
measures of categorization performance. Hogwarts was designed with a par-
ticular emphasis on processing efficiency, and portably implemented in the ANSI
C++ programming language and C++ Standard Template Library. The system
has built-in loaders for Reuters-21578 (Reuters, 1997), RCV1 (Lewis et al., 2004),
20 Newsgroups (Lang, 1995), Movie Reviews (Pang, Lee, and Vaithyanathan,
2002), and OHSUMED (Hersh et al., 1994), while additional datasets can be
easily integrated in a modular way.

Each document undergoes the following processing steps. Document text is
first tokenized, and title words are replicated twice to emphasize their importance.
Then, stop words, numbers and mixed alphanumeric strings are removed, and the
remaining words are stemmed. The bag of words is next merged with the set of
features generated for the document by analyzing its contexts as explained in
Section 3.4, and rare features occurring in fewer than 3 documents are removed.

Since earlier studies found that most BOW features are indeed useful for
SVM text categorization (Section 3.4.2), we take the bag of words in its entirety
(with the exception of rare features removed in the previous step). The gen-
erated features, however, undergo feature selection using the information gain
criterion. Finally, feature valuation is performed using the “ltc” tf.idf function
(logarithmic term frequency and inverse document frequency, followed by cosine
normalization) (Salton and Buckley, 1988; Debole and Sebastiani, 2003).

5Hogwarts School of Witchcraft and Wizardry is the educational institution attended by
Harry Potter (Rowling, 1997).
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5.2.2 Baseline Performance of Hogwarts

We now demonstrate that the performance of basic text categorization in our
implementation (column “Baseline” in Table 5.3) is consistent with the state
of the art as reflected in other published studies (all using SVM). On Reuters-
21578, Dumais et al. (1998) achieved micro-BEP of 0.920 for 10 categories and
0.870 for all categories. On 20NG, Bekkerman (2003) obtained BEP of 0.856.6

Pang, Lee, and Vaithyanathan (2002) obtained accuracy of 0.829 on Movies. The
minor variations in performance are due to differences in data preprocessing in the
different systems; for example, for the Movies dataset we worked with raw HTML
files rather than with the official tokenized version, in order to recover sentence
and paragraph structure for contextual analysis. For RCV1 and OHSUMED,
direct comparison with published results is more difficult because we limited the
category sets and the date span of documents to speed up experimentation.

5.2.3 Using the Feature Generator

We used the multi-resolution approach to feature generation, classifying docu-
ment contexts at the level of individual words, complete sentences, paragraphs,
and finally the entire document.7 For each context, features were generated from
the 10 best-matching concepts produced by the feature generator, as well as for
all of their ancestors (in the case of the ODP-based FG).

5.3 ODP-based Feature Generation

5.3.1 Qualitative Analysis of Feature Generation

We now study the process of feature generation on a number of actual examples.

Feature Generation per se

In this section we demonstrate ODP-based feature generation for a number of
sample sentences taken from CNN and other Web sites. For each example, we
discuss a number of highly relevant features found among the top ten generated
ones.

6Using distributional clustering of words, Bekkerman et al. (2003) obtained BEP of 0.886
on this dataset in the multi-labeled setting.

7The 20NG dataset is an exception, owing to its high level of intrinsic noise that renders
identification of sentence boundaries extremely unreliable, and causes word-level feature gen-
eration to produce too many spurious classifications. Consequently, for this dataset we restrict
the multi-resolution approach to individual paragraphs and the entire document only.
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Dataset Baseline

micro macro
BEP BEP

Reuters-21578
10 categories 0.925 0.874
90 categories 0.877 0.602
RCV1
Industry-16 0.642 0.595
Industry-10A 0.421 0.335
Industry-10B 0.489 0.528
Industry-10C 0.443 0.414
Industry-10D 0.587 0.466
Industry-10E 0.648 0.605
Topic-16 0.836 0.591
Topic-10A 0.796 0.587
Topic-10B 0.716 0.618
Topic-10C 0.687 0.604
Topic-10D 0.829 0.673
Topic-10E 0.758 0.742
OHSUMED
OHSUMED-10A 0.518 0.417
OHSUMED-10B 0.656 0.500
OHSUMED-10C 0.539 0.505
OHSUMED-10D 0.683 0.515
OHSUMED-10E 0.442 0.542
20NG 0.854
Movies 0.813

Table 5.3: Baseline performance of Hogwarts text categorization platform

• Text: “Rumsfeld appeared with Gen. Richard Myers, chairman of the Joint
Chiefs of Staff.”

Sample generated features:

– Society/Issues/Government Operations, Society/Politics —
both Donald Rumsfeld and Richard Myers are senior government
officers, hence the connection to government operations and pol-
itics. Their names have been selected for these ODP concepts,
since they appear in many Web sites cataloged under them, such as
the National Security Archive at the George Washington University
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(http://www.gwu.edu/̃ nsarchiv) and the John F. Kennedy School of
Government at Harvard University (http://www.ksg.harvard.edu).

– Society/Issues/Warfare and Conflict/Specific Conflicts/

Iraq, Science/Technology/Military Science, Society/Issues/

Warfare and Conflict/Weapons—again, both persons mentioned
were prominent during the Iraq campaign.

– Society/History/By Region/North America/United States/

Presidents/Bush, George Walker — Donald Rumsfeld serves as
Secretary of Defense under President George W. Bush.

– Society/Politics/Conservatism — Rumsfeld is often seen as holding
conservative views on a variety of political issues.

• Text: “The new film follows Anakin’s descent into evil and lust for power.”

Sample generated features:

– Arts/Movies/Titles/Star Wars Movies is the root of the ODP
subtree devoted to the “Star Wars” movie series. The word
“Anakin” has been selected as an attribute for this concept due
to its numerous occurrences in the cataloged Web sites such as
http://www.theforce.net and http://www.starwars.com.

– Arts/Performing Arts/Acting/Actors and Actresses/Chris-

tensen, Hayden is the actor who played Anakin Skywalker; this
particular piece of information cannot be inferred from the short
input sentence without elaborate background knowledge.

• Text: “On a night when Dirk Nowitzki (34 points), Jerry Stackhouse (29),
Josh Howard (19) and Jason Terry (17) all came up big, he couldn’t match
their offensive contributions.”

Sample generated features:

– Sports/Basketball/Professional/NBA/Dallas Mavericks—
even though the sentence mentions neither the particular sport nor
the name of the team, the power of context is at its best, immediately
yielding the correct classification as the best-scoring generated feature.
The names of the players mentioned in the context occur often in the
Web sites cataloged under this concept, including such resources as
http://www.nba.com/mavericks, http://dallasbasketball.com,
and http://sports.yahoo.com/nba/teams/dal.

• Text: “Herceptin is a so-called targeted therapy because of its ability to
attack diseased cells and leave healthy ones alone.”
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Sample generated features:

– Health/Conditions and Diseases/Cancer/Breast, Society/

Issues/Health/Conditions and Diseases/Cancer/Alternative -

Treatments, Health/Support Groups/Conditions and Disea-

ses/Cancer provide relevant additional information for Herceptin,
a medication for breast cancer. The name of this medicine has been
selected for these concepts due to its occurrences in cataloged Web
sites such as www.breastcancer.org, www.hopkinsmedicine.org/

breastcenter and cancer.gov/cancerinfo/wyntk/breast.

• Finally, we give an example of how the power of context can be used for
word sense disambiguation. The following pair of sentences use the word
“tie” in two different meanings—once as a necktie and once as a kind of
connection. Even though these sentences contain no distinguishing proper
names, the context of the polysemous words allows the feature generator to
produce correct suggestions in both cases

Text: “Kinship with others is based either on blood ties or on marital
ties.”

Sample generated features:

– Society/Genealogy

– Home/Family

– Society/Relationships

– Science/Social Sciences/Sociology

Text: “Our tie shop includes plain solid colour ties, novelty ties, patterned
silk ties, and men’s bow ties.”

Sample generated features:

– Shopping/Clothing/Men’s/Neckties

– Shopping/Clothing/Accessories/Men’s

– Business/Consumer Goods and Services/Clothing/Accessories/

Ties and Scarves

Evidently, many of the generated features could not have been accessed by
conventional text classification methods, since heavy use of world knowledge is
required to deduce them.
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Actual Text Categorization Examples Under a Magnifying Glass

Thanks to feature generation, our system correctly classifies the running example
document #15264. Let us consider additional testing examples from Reuters-
21578 that are incorrectly categorized by the BOW classifier. Document #16143
belongs to the category “money-fx” (money/foreign exchange) and discusses
the devaluation of the Kenyan shilling. Even though “money-fx” is one of the
10 largest categories, the word “shilling” does not occur in its training documents
even once. However, the feature generator easily recognizes it as a kind of cur-
rency, and produces features such as Recreation/Collecting/Paper Money

and Recreation/Collecting/Coins/World Coins. While analyzing docu-
ment contexts it also uses other words such as “Central Bank of Kenya”
and “devaluation” to correctly map the document to ODP concepts Soci-

ety/Government/Finance, Science/Social Sciences/Economics and Busi-

ness/Financial Services/Banking Services. Even though the behavior of the
Kenyan shilling was never mentioned in the training set, these high-level fea-
tures were also constructed for many training examples, and consequently the
document is now classified correctly.

Similarly, document #18748 discusses Italy’s balance of payments and be-
longs to the category “trade” (interpreted as an economic indicator), while the
word “trade” itself does not occur in this short document. However, when
the feature generator considers document contexts discussing Italian deficit
as reported by the Bank of Italy, it correctly maps them to concepts such
as Society/Government/Finance, Society/Issues/Economic/Internatio-

nal/Trade, Business/International Business and Trade. These features,
which were also generated for training documents in this category (notably, docu-
ment #271 on Japanese trade surplus, document #312 on South Korea’s account
surplus, document #354 on tariff cuts in Taiwan and document #718 on U.S.-
Canada trade pact), allow the document to be categorized correctly.

Let us also consider a few documents from the Movie Reviews dataset that
confuse the BOW classifier (here we consider a training/testing split induced
by one particular cross-validation fold). Recall that this dataset represents a
sentiment classification task, where documents are classified according to the
sentiment of the review (positive or negative) rather than its topic. Docu-
ment #19488 contains a negative review of Star Wars Episode 1, but at the
word level it is difficult to judge its true sentiment since positive and negative
words are interspersed. For instance, the sentence “Anakin is annoying and un-
likeable, instead of cute and huggable as Lucas no doubt intended” contains two
words with positive connotation (“cute and huggable”) that counterbalance the
two words with negative ones (“annoying and unlikeable”). However, given con-
texts like “The two leads are hideously boring, static characters given little to
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do and too much time to do it,” the feature generator produces features such as
Arts/Movies/Reviews/Top Lists/Bad Films. This ODP node catalogs Web
sites devoted to reviews of bad movies, and the wording of this sample context
looks similar to that used in known negative reviews (as cataloged in the ODP).
In fact, this particular feature is one of the most informative ones generated for
this dataset, and it is also produced for contexts like “Next up we have the dia-
logue, which is amusingly bad at its best, painful at its worst” and “What ensues
is a badly scripted and horribly directed 114 minutes of cinema hell,” both found
in negative reviews.

As another example, consider document #15111, which contains a posi-
tive review of the movie “Soldier.” This review, which constantly switches
between criticizing and praising the film, easily perplexes the BOW classi-
fier. Interestingly, given the sentence “It is written by David Webb Peoples,
who penned the screenplay to the classic Blade Runner and the critically-
acclaimed 12 Monkeys,” the feature generator constructs the highly informative
feature Arts/Movies/Reviews/Top Lists/Good Films. This is made possible
by the references to known good films (“Blade Runner” and “12 Monkeys”) that
are listed in Web sites devoted to good films (http://www.filmsite.org and
http://us.imdb.com/top 250 films, for example). The same feature was also
generated for a number of training documents, and thus helps the classifier to
categorize the document correctly.

The Importance of Feature Selection

To understand the utility of feature selection, consider a sample sentence from
our running example, Reuters document #15264: “Cominco’s share of produc-
tion was 43,000 short tons of copper, 340,000 ounces of silver and 800 ounces of
gold.” Table 5.4 gives the top ten ODP concepts generated as features for this
context. Most of the assigned concepts deal with mining and drilling, and will
eventually be useful features for document classification. However, the concepts
Business/Investing/Commodities, Futures/Precious Metals, Shopping and
Business/Investing/Commodities, Futures/Precious Metals/Gold have
been triggered by the words “gold” and ”silver,” which are mentioned inciden-
tally and do not describe the gist of the document. Feature selection is therefore
needed to eliminate features based on these extraneous concepts.

As another example, consider the following sentence taken from the same
document: “‘Cominco, 29.5 percent owned by a consortium led by Teck, is op-
timistic that the talks will soon be concluded,’ spokesman Don Townson told
Reuters,” along with its top ten classifications given in Table 5.5. Here, the con-
cept Society/Issues is triggered by the word “Reuters.” In turn, the concept
Business/Marketing and Advertising/Consulting/Sales is triggered by the
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# ODP concept

1 Business/Mining and Drilling/Mineral Exploration and Extraction

2 Business/Mining and Drilling

3 Business/Mining and Drilling/Mineral Exploration and Extraction/

Base Metals

4 Science/Technology/Mining

5 Business/Mining and Drilling/Consulting

6 Business/Investing/Commodities, Futures/Precious Metals

7 Shopping

8 Business/Mining and Drilling/Mining Equipment

9 Business/Investing/Commodities, Futures/Precious Metals/Gold

10 Science/Technology/Mining/Investments

Table 5.4: The top ten ODP concepts generated for the sentence “Cominco’s share
of production was 43,000 short tons of copper, 340,000 ounces of silver and 800
ounces of gold.”

name of the company spokesman, Don Townson. As it happens, a sales consulting
company named “Townson & Alexander Consulting Services” is catalogued under
this concept. Based on the crawled content of this site, the word “Townson” and
other sales-related words in the context (e.g., “percent,” “owned,” “optimistic,”
and “consortium”) taken together yield this concept in the results. Again, this
sales-related concept is hardly useful for categorizing copper-related documents,
and features based on it would therefore not be selected.

5.3.2 The Effect of Feature Generation

Table 5.6 shows the results of using feature generation for text categorization,
with significant improvements (p < 0.05) shown in bold. We consistently observed
larger improvements in macro-averaged BEP, which is dominated by categoriza-
tion effectiveness on small categories. This goes in line with our expectations
that the contribution of external knowledge should be especially prominent for
categories with few training examples. As can be readily seen, categorization
performance was improved for all datasets, with notably high improvements for
Reuters RCV1, OHSUMED and Movies. Given the performance plateau cur-
rently reached by the best text categorizers, these results clearly demonstrate the
advantage of knowledge-based feature generation.
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# ODP concept

1 Business/Mining and Drilling/Mineral Exploration and Extraction/

Base Metals
2 Business/Mining and Drilling/Mineral Exploration and Extraction

3 Business/Mining and Drilling

4 Business/Mining and Drilling/Consulting

5 Society/Issues

6 Regional/North America/Canada/British Columbia/Localities/

Kimberley
7 Science/Technology/Mining

8 Business/Marketing and Advertising/Consulting/Sales

9 Regional/North America/Canada/Quebec/Regions/Northern Quebec

10 Science/Environment/Mining

Table 5.5: The top ten ODP concepts generated for the sentence “‘Cominco, 29.5
percent owned by a consortium led by Teck, is optimistic that the talks will soon be
concluded,’ spokesman Don Townson told Reuters.”

5.3.3 The Effect of Contextual Analysis

We now explore the various possibilities for defining document contexts for fea-
ture generation, i.e., chunks of document text that are classified onto the ODP to
construct features. Figure 5.1 shows how text categorization performance on the
Movies dataset changes for various contexts. The x-axis measures context length
in words, and the FG/words curve corresponds to applying the feature generator
to the context of that size. With these word-level contexts, maximum perfor-
mance is achieved when using pairs of words (x=2). The Baseline line represents
text categorization without feature generation. The FG/doc line shows what hap-
pens when the entire document is used as a single context. In this case, the results
are somewhat better than without feature generation (Baseline), but are still infe-
rior to the more fine-grained word-level contexts (FG/words). However, the best
performance by far is achieved with the multi-resolution approach (FG/multi),
in which we use a series of linguistically motivated chunks of text, starting with
individual words, and then generating features from sentences, paragraphs, and
finally the entire document.

5.3.4 The Effect of Knowledge Breadth

In the experiments reported in Section 5.3.2 we performed feature generation us-
ing the entire ODP. It is interesting to observe, however, that four out of the five
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Dataset Baseline Feature Improvement
generation vs. baseline

micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP

Reuters-21578
10 categories 0.925 0.874 0.930 0.884 +0.5% +1.1%
90 categories 0.877 0.602 0.880 0.614 +0.3% +2.0%

RCV1
Industry-16 0.642 0.595 0.648 0.613 +0.9% +3.0%
Industry-10A 0.421 0.335 0.457 0.420 +8.6% +25.4%
Industry-10B 0.489 0.528 0.530 0.560 +8.4% +6.1%
Industry-10C 0.443 0.414 0.468 0.463 +5.6% +11.8%
Industry-10D 0.587 0.466 0.588 0.496 +0.2% +6.4%
Industry-10E 0.648 0.605 0.657 0.639 +1.4% +5.6%
Topic-16 0.836 0.591 0.840 0.660 +0.5% +11.7%
Topic-10A 0.796 0.587 0.803 0.692 +0.9% +17.9%
Topic-10B 0.716 0.618 0.727 0.655 +1.5% +6.0%
Topic-10C 0.687 0.604 0.694 0.618 +1.0% +2.3%
Topic-10D 0.829 0.673 0.836 0.687 +0.8% +2.1%
Topic-10E 0.758 0.742 0.762 0.756 +0.5% +1.9%

OHSUMED
OHSUMED-10A 0.518 0.417 0.537 0.479 +3.7% +14.9%
OHSUMED-10B 0.656 0.500 0.659 0.548 +0.5% +9.6%
OHSUMED-10C 0.539 0.505 0.547 0.540 +1.5% +6.9%
OHSUMED-10D 0.683 0.515 0.688 0.549 +0.7% +6.6%
OHSUMED-10E 0.442 0.542 0.452 0.573 +2.3% +5.7%

20NG 0.854 0.858 +0.5%
Movies 0.813 0.842 +3.6%

Table 5.6: Text categorization with and without feature generation

datasets we used have a fairly narrow scope.8 Specifically, both Reuters datasets
(Reuters-21578 and RCV1) contain predominantly economic news and therefore
match the scope of the Top/Business branch of the ODP. Similarly, Movie Re-
views contains opinions about movies, and therefore fits the scope of Top/Arts.
OHSUMED contains medical documents, which can be modelled within the scope
of Top/Health and Top/Science. In the light of this, it could be expected that
restricting the feature generator to a particular ODP branch that corresponds

8The 20 Newsgroups dataset consists of 20 diverse categories, each of which corresponds to
one or more ODP branches.
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Figure 5.1: Varying context length (Movies)

to the scope of the test collection would result in much better categorization
accuracy due to the elimination of noise in “unused” ODP branches.

Experimental results (Table 5.7) disprove this hypothesis. As can be seen, in
the absolute majority of cases the improvement over the baseline is much larger
when the entire ODP is used (cf. Table 5.6). These findings show the superiority
of wide general-purpose knowledge over its domain-specific subsets.

5.3.5 The Utility of Feature Selection

Under the experimental settings defined in Section 5.2.3, feature generation con-
structed approximately 4–5 times as many features as are in the bag of words
(after rare features that occurred in less than 3 documents were removed). We
conducted two experiments to understand the effect of feature selection in con-
junction with feature generation.

Since earlier studies found that feature selection from the bag of words im-
pairs SVM performance (Section 3.4.2), in our first experiment we apply feature
selection only to the generated features and use the selected ones to augment the
(entire) bag of words. In Figures 5.2 and 5.3, the BOW line depicts the baseline
performance without generated features, while the BOW+GEN curve shows the
performance of the bag of words augmented with progressively larger fractions of
generated features (sorted by information gain). For both datasets, the perfor-
mance peaks when only a small fraction of the generated features are used, while
retaining more generated features has a noticeable detrimental effect.

Our second experiment examined the performance of the generated features
alone, without the bag of words (GEN curve in Figures 5.2 and 5.3). For Movies,
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Dataset Domain-specific ODP subset Full ODP
Subset micro macro micro macro
description BEP BEP BEP BEP

Reuters-21578 Top/Business
10 categories +0.4% +0.6% +0.5% +1.1%
90 categories +0.1% +1.2% +0.3% +2.0%

RCV1 Top/Business
Industry-16 +1.9% +2.2% +0.9% +3.0%
Topic-16 +0.5% +1.4% +0.5% +11.7%

OHSUMED Top/Health
OHSUMED-10A +2.1% +1.7% +3.7% +14.9%
OHSUMED-10B +0.2% +1.2% +0.5% +9.6%
OHSUMED-10C +1.7% +2.8% +1.5% +6.9%
OHSUMED-10D +0.3% +1.9% +0.7% +6.6%
OHSUMED-10E +2.7% +1.8% +2.3% +5.7%

OHSUMED Top/Health +
Top/Science

OHSUMED-10A +5.4% +3.6% +3.7% +14.9%
OHSUMED-10B +0.3% +3.4% +0.5% +9.6%
OHSUMED-10C +0.6% +3.8% +1.5% +6.9%
OHSUMED-10D +0.9% +5.8% +0.7% +6.6%
OHSUMED-10E +1.6% +1.8% +2.3% +5.7%

Movies Top/Arts +2.6% +3.6%

Table 5.7: Text categorization with and without feature generation, when only a
subset of the ODP is used

discarding the BOW features leads to somewhat worse performance, but the
decrease is far less significant than what could be expected—using only the gen-
erated features we lose less than 3% in BEP compared with the BOW baseline.
For 20NG, a similar experiment sacrifices about 10% of the BOW performance, as
this dataset is known to have a very diversified vocabulary, for which many stud-
ies found feature selection to be particularly harmful. Similarly, for OHSUMED,
using only the generated features sacrifices up to 15% in performance, reinforcing
the value of precise medical terminology that is discarded in this experiment.
However, the situation is reversed for both Reuters datasets. For Reuters-21578,
the generated features alone yield a 0.3% improvement in micro- and macro-BEP
for 10 categories, while for 90 categories they only lose 0.3% in micro-BEP and
3.5% in macro-BEP compared with the bag of words. For RCV1/Industry-16, dis-
posing of the bag of words reduces BEP performance by 1–3%. Surprisingly, for
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Figure 5.3: Feature selection (RCV1/Topic-16)

RCV1/Topic-16 (Figure 5.3) the generated features per se command a 10.8% im-
provement in macro-BEP, rivalling the performance of BOW+GEN, which gains
only another 1% (Table 5.6). We interpret these findings as further reinforcement
that the generated features improve the quality of the representation.

5.3.6 The Effect of Category Size

We saw in Section 5.3.2 that feature generation greatly improves text categoriza-
tion for smaller categories, as can be evidenced in the greater improvements in
macro-BEP. To explore this phenomenon further, we depict in Figures 5.4 and 5.5
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Figure 5.4: RCV1 (Industry): Average improvement versus category size

the relation between the category size and the improvement due to feature gen-
eration for RCV1 (the number of categories in each bin appears in parentheses
above the bars). To this end, we pooled together the categories that comprised
the individual sets (10A–10E) in the Industry and Topic groups, respectively.

As we can readily see, smaller categories tend to benefit more from knowledge-
based feature generation. These graphs also explain the more substantial improve-
ments observed for Industry categories compared to Topic categories—as can be
seen from the graphs, Topic categories are larger than Industry categories, and
the average size of Topic categories (among those we used in this study) is almost
6 times larger than that of Industry categories.

5.3.7 The Effect of Feature Generation for Classifying
Short Documents

We conjectured that knowledge-based feature generation might be particularly
useful for classifying short documents. To evaluate this hypothesis, we used the
datasets defined in Section 5.1.6.

Table 5.8 presents the results of this experiment. As we can see, in the ma-
jority of cases (except for RCV1 Topic category sets), feature generation leads to
greater improvement on short documents than on regular documents. Notably,
the improvements are particularly high for OHSUMED, where “pure” experimen-
tation on short documents is possible (see Section 5.1.6).
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Figure 5.5: RCV1 (Topic): Average improvement versus category size

5.3.8 Processing Time

Using the ODP as a source of background knowledge requires additional compu-
tation. This extra computation includes the (one-time) preprocessing step where
the feature generator is built, as well as the actual feature generation performed
on documents prior to text categorization. The processing times reported be-
low were measured on a workstation with dual Xeon 2.2 GHz CPU and 2 Gb
RAM running the Microsoft Windows XP Professional operating system (Service
Pack 1).

Parsing the ODP structure (file structure.rdf.u8) took 3 minutes. Parsing
the list of ODP URLs (file content.rdf.u8) required 3 hours, and parsing the
crawled ODP data (meta-documents collected from all cataloged URLs) required
2.6 days. Attribute selection for ODP concepts took 1.5 hours. The cumulative
one-time expenditure for building the feature generator was therefore just under
3 days (not counting the actual Web crawling that was performed beforehand).

We benchmarked feature generation in two scenarios—individual words and
10-word windows. In the former case, the feature generator classified approxi-
mately 310 words per second, while in the latter case it classified approximately
45 10-word windows per second (i.e., 450 words per second).9 These times con-
stitute the additional overhead required by feature generation compared with
regular text categorization. Table 5.9 lists the sizes of the test collections we ex-
perimented with (see Section 5.1). To speed up experimentation, we used subsets
of the entire RCV1 and OHSUMED collections; these subsets are comparable in

9Classifying word windows is more efficient due to the sharing of data structures when
processing the words in a single context.
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Dataset Short documents Full documents
Baseline Feature Improvement Improvement

generation vs. baseline vs. baseline
micro macro micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578
10 categories 0.868 0.774 0.868 0.777 +0.0% +0.4% +0.5% +1.1%
90 categories 0.793 0.479 0.794 0.498 +0.1% +4.0% +0.3% +2.0%

RCV1
Industry-16 0.454 0.400 0.466 0.415 +2.6% +3.7% +0.9% +3.0%
Industry-10A 0.249 0.199 0.278 0.256 +11.6% +28.6% +8.6% +25.4%
Industry-10B 0.273 0.292 0.348 0.331 +27.5% +13.4% +8.4% +6.1%
Industry-10C 0.209 0.199 0.295 0.308 +41.1% +54.8% +5.6% +11.8%
Industry-10D 0.408 0.361 0.430 0.431 +5.4% +19.4% +0.2% +6.4%
Industry-10E 0.450 0.410 0.490 0.459 +8.9% +12.2% +1.4% +5.6%
Topic-16 0.763 0.529 0.763 0.534 +0.0% +0.9% +0.5% +11.7%
Topic-10A 0.718 0.507 0.720 0.510 +0.3% +0.6% +0.9% +17.9%
Topic-10B 0.647 0.560 0.644 0.560 -0.5% +0.0% +1.5% +6.0%
Topic-10C 0.551 0.471 0.561 0.475 +1.8% +0.8% +1.0% +2.3%
Topic-10D 0.729 0.535 0.730 0.553 +0.1% +3.4% +0.8% +2.1%
Topic-10E 0.643 0.636 0.656 0.646 +2.0% +1.6% +0.5% +1.9%

OHSUMED
OHSUMED-10A 0.302 0.221 0.357 0.253 +18.2% +14.5% +3.7% +14.9%
OHSUMED-10B 0.306 0.187 0.348 0.243 +13.7% +29.9% +0.5% +9.6%
OHSUMED-10C 0.441 0.296 0.494 0.362 +12.0% +22.3% +1.5% +6.9%
OHSUMED-10D 0.441 0.356 0.448 0.419 +1.6% +17.7% +0.7% +6.6%
OHSUMED-10E 0.164 0.206 0.211 0.269 +28.7% +30.6% +2.3% +5.7%

20NG 0.699 0.740 +5.9% +0.5%

Table 5.8: Text categorization of short documents with and without feature genera-
tion (the improvement percentage in the two rightmost columns is computed relative
to the baseline shown in Table 5.6)

size with 20 Newsgroups and Reuters-21578.

In the light of the improvements in categorization accuracy due to feature
generation, we believe that the extra processing time is well compensated for. In
operational text categorization systems, documents rarely arrive in huge batches
of hundreds of thousands at a time. For example, the RCV1 dataset contains all
English-language news items published by Reuters over the period of one year.
Therefore, in practical settings, once the classification model has been trained, the
number of documents it needs to classify per time unit is much more reasonable,
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Dataset Number of documents Number of words10

20NG 19,997 5.5 million
Movies 1,400 0.95 million
Reuters-21578 21,902 2.8 million
RCV1
- full 804,414 196 million
- used in this study 23,149 5.5 million
OHSUMED
- full 348,566 57 million
- used in this study 20,000 3.7 million

Table 5.9: Test collection sizes

and can be easily facilitated by our system.

5.4 Wikipedia-based Feature Generation

In this section we evaluate the feature generator based on Wikipedia.

5.4.1 Qualitative Analysis of Feature Generation

We start with demonstrating the results of feature generation on a number of
actual examples.

Feature Generation per se

To illustrate our approach, we show features generated for several text fragments.
Whenever applicable, we provide short explanations of the generated concepts; in
most cases, the explanations are taken from Wikipedia itself (Wikipedia, 2006).

• Text: “Wal-Mart supply chain goes real time”

Sample generated features:

– Wal-Mart

– Sam Walton — Wal-Mart founder

– Sears Holdings Corporation, Target Corporation, Albertsons

— prominent competitors of Wal-Mart

10Measured using the ‘wc’ utility available on UNIX systems.
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– RFID — Radio Frequency Identification, a technology that Wal-Mart
uses very extensively to manage its stock

– Hypermarket — superstore (a general concept, of which Wal-Mart is
a specific example)

– United Food and Commercial Workers — a labor union that has
been trying to organize Wal-Mart’s workers

• Text: “Scientific methods in biology”

Sample generated features:

– Biology

– Scientific classification

– Science

– Chemical biology

– Binomial nomenclature — the formal method of naming species in
biology

– Nature (journal)

– Social sciences

– Philosophy of biology

– Scientist

– History of biology

• Text: “With quavering voices, parents and grandparents of those killed at
the World Trade Center read the names of the victims in a solemn recitation
today, marking the third anniversary of the terror attacks. The ceremony
is one of many planned in the United States and around the world to honor
the memory of the nearly 3,000 victims of 9/11.”

Sample generated features:

– September 11, 2001 attack memorials and services

– United Airlines Flight 93 — one of the four flights hijacked on
September 11, 2001

– Aftermath of the September 11, 2001 attacks

– World Trade Center

– September 11, 2001 attacks

– Oklahoma City bombing — a terrorist attack in Oklahoma City in
1995
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– World Trade Center bombing

– Arlington National Cemetery — an American military cemetery

– World Trade Center site

– Jewish bereavement

• Text: “A group of European-led astronomers has made a photograph of
what appears to be a planet orbiting another star. If so, it would be the first
confirmed picture of a world beyond our solar system.”

Sample generated features:

– Planet

– Solar system

– Astronomy

– Planetary orbit

– Extrasolar planet

– Pluto

– Jupiter

– Neptune

– Minor planet

– Mars

• Text: “Nearly 70 percent of Americans say they are careful about what
they eat, and even more say diet is essential to good health, according to a
new nationwide health poll in which obesity ranked second among the biggest
health concerns.”

Sample generated features:

– Veganism — a philosophy of avoiding animal-derived food

– Vegetarianism

– Obesity

– Atkins Nutritional Approach

– Binge eating disorder

– Dick Gregory — an American nutritionist

– Nutrition

– Super Size Me — a documentary film about an individual who ate
only McDonald’s fast food for one full month
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– Health insurance

– Eating disorder

• Text: “U.S. intelligence cannot say conclusively that Saddam Hussein has
weapons of mass destruction, an information gap that is complicating White
House efforts to build support for an attack on Saddam’s Iraqi regime. The
CIA has advised top administration officials to assume that Iraq has some
weapons of mass destruction. But the agency has not given President Bush a
“smoking gun,” according to U.S. intelligence and administration officials.”

Sample generated features:

– Iraq disarmament crisis

– Yellowcake forgery — falsified intelligence documents about Iraq’s
alleged attempt to purchase yellowcake uranium

– Senate Report of Pre-War Intelligence on Iraq

– Iraq and weapons of mass destruction

– Iraq Survey Group

– September Dossier — a paper on Iraq’s weapons of mass destruction
published by the UK government in 2002

– Iraq war

– Scott Ritter — UN weapons inspector in Iraq

– Iraq War Rationale

– Operation Desert Fox — US and UK joint military campaign in
Iraq in 1998

• Text: ‘The development of T-cell leukaemia following the otherwise suc-
cessful treatment of three patients with X-linked severe combined immune
deficiency (X-SCID) in gene-therapy trials using haematopoietic stem cells
has led to a re-evaluation of this approach. Using a mouse model for gene
therapy of X-SCID, we find that the corrective therapeutic gene IL2RG itself
can act as a contributor to the genesis of T-cell lymphomas, with one-third
of animals being affected. Gene-therapy trials for X-SCID, which have been
based on the assumption that IL2RG is minimally oncogenic, may therefore
pose some risk to patients.”

Sample generated features:

– Leukemia

– Severe combined immunodeficiency
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– Cancer

– Non-Hodgkin lymphoma — a particular cancer type

– AIDS

– ICD-10 Chapter II: Neoplasms; Chapter III: Diseases of the

blood and blood-forming organs, and certain disorders involv-

ing the immune mechanism — a disease code of the ICD (International
Statistical Classification of Diseases and Related Health Problems)

– Bone marrow transplant

– Immunosuppressive drug

– Acute lymphoblastic leukemia

– Multiple sclerosis

• Finally, it is particularly interesting to juxtapose the features generated for
fragments that contain ambiguous words. To this end, we show features
generated for two phrases that contain the word “bank” in two different
senses, “Bank of America” (financial institution) and “Bank of Amazon”
(river bank). As can be readily seen, our feature generation methodology is
capable of performing word sense disambiguation by considering ambiguous
words in the context of their neighbors.

Text: “Bank of America”

Sample generated features:

– Bank

– Bank of America

– Bank of America Plaza (Atlanta)

– Bank of America Plaza (Dallas)

– MBNA — a bank holding company acquired by Bank of America

– VISA (credit card)

– Bank of America Tower, New York City

– NASDAQ

– MasterCard

– Bank of America Corporate Center

Text: “Bank of Amazon”

Sample generated features:
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– Amazon River

– Amazon Basin

– Amazon Rainforest

– Amazon.com

– Rainforest

– Atlantic Ocean

– Brazil

– Loreto Region - a region in Peru, located in the Amazon Rainforest

– River

– Economy of Brazil

• As another example, consider a pair of contexts that contain the word
“jaguar”, where the first context contains this ambiguous word in the sense
of a car model, and the second one—in the sense of an animal.

Text: “Jaguar car models”

Sample generated features:

– Jaguar (car)

– Jaguar (S-Type) — a particular Jaguar car model

– Jaguar X-type — a particular Jaguar car model

– Jaguar E-Type — a particular Jaguar car model

– Jaguar XJ — a particular Jaguar car model

– Daimler Motor Company — a car manufacturing company that be-
came a part of Jaguar in 1960

– British Leyland Motor Corporation - another vehicle manufactur-
ing company that merged with Jaguar

– Luxury vehicles

– V8 engine — an internal combustion engine used in some Jaguar car
models

– Jaguar Racing — a Formula One team used by Jaguar to promote
its brand name

Text: “Jaguar (Panthera onca)”

Sample generated features:

– Jaguar
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– Felidae — a family that include lions, tigers, jaguars, and other re-
lated feline species

– Black panther

– Leopard

– Puma

– Tiger

– Panthera hybrid

– Cave lion

– American lion

– Kinkajou — another carnivore mammal

Using Inter-article Links for Generating Additional Features

In Section 4.2.3, we presented an algorithm that generates additional features
using inter-article links as relations between concepts. In what follows, we show
a series of text fragments, where for each fragment we show (a) features generated
with the regular FG algorithm, (b) features generated using Wikipedia links, and
(c) more general features generated using links. As we can see from the examples,
the features constructed from the links are in most cases highly relevant to the
input text.

• Text: “Google search”

Regular feature generation:

– Search engine

– Google Video

– Google

– Google (search)

– Google Maps

– Google Desktop

– Google (verb)

– Google News

– Search engine optimization

– Spamdexing — search engine spamming

Features generated using links:
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– PageRank

– AdWords

– AdSense

– Gmail

– Google Platform

– Website

– Sergey Brin

– Google bomb

– MSN Search

– Nigritude ultramarine — a meaningless phrase used in a search
engine optimization contest in 2004

More general features only:

– Website

– Mozilla Firefox

– Portable Document Format

– Algorithm

– World Wide Web

• Text: “artificial intelligence”

Regular feature generation:

– Artificial intelligence

– A.I. (film)

– MIT Computer Science and Artificial Intelligence Laboratory

– Artificial life

– Strong AI

– Swarm intelligence

– Computer Science

– Frame problem

– Cognitive science

– Carl Hewitt

Features generated using links:
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– Robot

– John McCarthy (computer scientist)

– Artificial consciousness

– Marvin Minsky

– Planner programming language

– Actor model — a model of concurrent computation formulated by
Carl Hewitt and his colleagues

– Logic

– Scientific Community Metaphor

– Natural language processing

– Lisp programming language

More general features only:

– Robot

– Massachusetts Institute of Technology

– Psychology

– Consciousness

– Lisp programming language

• Text: “Israel terror”

Regular feature generation:

– Israel

– Palestinian political violence

– Terrorism

– Labour (Israel)

– Terrorism against Israel

– Israel Defense Forces

– Shabak

– Steve Israel — an American politician who has worked extensively
on military and terrorism-related issues; his interests include national
security and the State of Israel

– Israeli peace camp
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– Agudat Israel — a religious political party in Israel, which has re-
cently become more conscious of issues related to Israel’s security

Features generated using links:

– Oslo Accords

– Al-Aqsa Intifada

– Israeli-Palestinian conflict

– 1982 Lebanon War

– British Mandate of Palestine

– Israel Border Police

– Israel’s unilateral disengagement plan

– History of Israel

– Israeli Security Forces

– Israel-Jordan Treaty of Peace

More general features only:

– Jew

– Gaza Strip

– West Bank

– British Mandate of Palestine

– Six-Day War

• Text: “programming tools”

Regular feature generation:

– Tool

– Programming tool

– Computer software

– Integrated development environment

– Computer-aided software engineering

– Macromedia Flash

– Borland

– Game programmer

– C programming language
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– Performance analysis

Features generated using links:

– Compiler

– Debugger

– Source code

– Software engineering

– Microsoft

– Revision control

– Scripting language

– GNU

– Make

– Linux

More general features only:

– Microsoft

– Software engineering

– Linux

– Compiler

– GNU

• Text: “A group of European-led astronomers has made a photograph of
what appears to be a planet orbiting another star. If so, it would be the first
confirmed picture of a world beyond our solar system.”

Regular feature generation:

– Planet

– Solar system

– Astronomy

– Planetary orbit

– Extrasolar planet

– Pluto

– Jupiter

– Neptune
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– Minor planet

– Mars

Features generated using links:

– Asteroid

– Earth

– Oort cloud — a postulated cloud of comets

– Comet

– Sun

– Saturn

– Moon

– Mercury (planet)

– Asteroid belt

– Orbital period

More general features only:

– Earth

– Moon

– Asteroid

– Sun

– National Aeronautics and Space Administration

• Text: “Nearly 70 percent of Americans say they are careful about what
they eat, and even more say diet is essential to good health, according to a
new nationwide health poll in which obesity ranked second among the biggest
health concerns.”

Regular feature generation:

– Veganism — a philosophy of avoiding animal-derived food

– Vegetarianism

– Obesity

– Atkins Nutritional Approach

– Binge eating disorder

– Dick Gregory — an American nutritionist
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– Nutrition

– Super Size Me — a documentary film about an individual who eats
only McDonald’s fast food for one full month

– Health insurance

– Eating disorder

Features generated using links:

– Raw food diet

– Diabetes mellitus

– Healthy eating

– Body mass index

– Omega-3 fatty acid — an important nutritional component

– Dieting

– Milk

– United States — this classification is quite interesting, as the issue
discussed in the input text fragment is very characteristic of the Amer-
ican life style

– Hypertension

– Egg (food)

More general features only:

– United States

– Diabetes mellitus

– Cancer

– Food

– McDonald’s

5.4.2 The Effect of Feature Generation

Table 5.10 shows the results of using Wikipedia-based feature generation, with
significant improvements (p < 0.05) shown in bold. We consistently observed
larger improvements in macro-averaged BEP, which is dominated by categoriza-
tion effectiveness on small categories. This goes in line with our expectations
that the contribution of encyclopedic knowledge should be especially prominent
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Dataset Baseline Wikipedia Improvement
micro macro micro macro micro macro

BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.925 0.874 0.932 0.887 +0.8% +1.5%
Reuters-21578 (90 cat.) 0.877 0.602 0.883 0.603 +0.7% +0.2%

RCV1 Industry-16 0.642 0.595 0.645 0.617 +0.5% +3.7%
RCV1 Industry-10A 0.421 0.335 0.448 0.437 +6.4%+30.4%
RCV1 Industry-10B 0.489 0.528 0.523 0.566 +7.0% +7.2%
RCV1 Industry-10C 0.443 0.414 0.468 0.431 +5.6% +4.1%
RCV1 Industry-10D 0.587 0.466 0.595 0.459 +1.4% -1.5%
RCV1 Industry-10E 0.648 0.605 0.641 0.612 -1.1% +1.2%
RCV1 Topic-16 0.836 0.591 0.843 0.661 +0.8% +11.8%
RCV1 Topic-10A 0.796 0.587 0.798 0.682 +0.3% +16.2%
RCV1 Topic-10B 0.716 0.618 0.723 0.656 +1.0% +6.1%
RCV1 Topic-10C 0.687 0.604 0.699 0.618 +1.7% +2.3%
RCV1 Topic-10D 0.829 0.673 0.839 0.688 +1.2% +2.2%
RCV1 Topic-10E 0.758 0.742 0.765 0.755 +0.9% +1.8%

OHSUMED-10A 0.518 0.417 0.538 0.492 +3.9%+18.0%
OHSUMED-10B 0.656 0.500 0.667 0.534 +1.7% +6.8%
OHSUMED-10C 0.539 0.505 0.545 0.522 +1.1% +3.4%
OHSUMED-10D 0.683 0.515 0.692 0.546 +1.3% +6.0%
OHSUMED-10E 0.442 0.542 0.462 0.575 +4.5% +6.1%

20NG 0.854 0.862 +1.0%

Movies 0.813 0.842 +3.6%

Table 5.10: The effect of feature generation

for categories with few training examples. Categorization performance was im-
proved for virtually all datasets, with notable improvements of up to 30.4% for
RCV1 and 18% for OHSUMED. Using the Wilcoxon test, we found that the
Wikipedia-based classifier is significantly superior to the baseline with p < 10−5

in both micro- and macro-averaged cases. Given the performance plateau cur-
rently reached by the best text categorizers, these results clearly demonstrate the
advantage of knowledge-based feature generation.
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Wikipedia snapshot Wikipedia snapshot
as of November 11, 2005 as of March 23, 2006

Combined article text 1.8 Gb 2.9 Gb
Number of articles 910,989 1,187,839
Concepts used 171,332 241,393
Distinct terms 296,157 389,202

Table 5.11: Comparison of two Wikipedia snapshots

5.4.3 The Effect of Knowledge Breadth

Wikipedia is being constantly expanded with new material as volunteer editors
contribute new articles and extend the existing ones. Consequently, we conjec-
tured that such addition of information should be beneficial for feature generation,
as it would rely on a larger knowledge base.

To test this assumption, we acquired a new Wikipedia snapshot as of
March 26, 2006. Table 5.11 presents a comparison in the amount of information
between two Wikipedia snapshots we used. Table 5.12 shows the effect of feature
generation using the newer snapshot. As we can see, using the larger amount of
knowledge leads on average to greater improvements in text categorization per-
formance. Although the difference between the performance of the two versions
is admittedly small, it is consistent across datasets (a similar situation happens
when assessing the role of external knowledge for computing semantic relatedness,
see Section 6.2.2).

5.4.4 Classifying Short Documents

We conjectured that Wikipedia-based feature generation should be particularly
useful for classifying short documents, similarly to using ODP (cf. Section 5.3.7).

Table 5.13 presents the results of this evaluation on the datasets defined in
Section 5.1.6. In the majority of cases, feature generation yielded greater im-
provement on short documents than on regular documents. Notably, the im-
provements are particularly high for OHSUMED, where “pure” experimentation
on short documents is possible (see Section 5.1.6). According to the Wilcoxon
test, the Wikipedia-based classifier is significantly superior to the baseline with
p < 2 · 10−6. These findings confirm our hypothesis that encyclopedic knowl-
edge should be particularly useful when categorizing short documents, which are
inadequately represented by the standard bag of words.
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Dataset Baseline Wikipedia Improvement Improvement
(26/03/06) (26/03/06) (05/11/05)

micro macro micro macro micro macro micro macro

BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.925 0.874 0.935 0.891 +1.1% +1.9% +0.8% +1.5%
Reuters-21578 (90 cat.) 0.877 0.602 0.883 0.600 +0.7% -0.3% +0.7% +0.2%

RCV1 Industry-16 0.642 0.595 0.648 0.616 +0.9% +3.5% +0.5% +3.7%
RCV1 Industry-10A 0.421 0.335 0.457 0.450 +8.6% +34.3% +6.4% +30.4%
RCV1 Industry-10B 0.489 0.528 0.527 0.559 +7.8% +5.9% +7.0% +7.2%
RCV1 Industry-10C 0.443 0.414 0.458 0.424 +3.4% +2.4% +5.6% +4.1%
RCV1 Industry-10D 0.587 0.466 0.607 0.448 +3.4% -3.9% +1.4% -1.5%
RCV1 Industry-10E 0.648 0.605 0.649 0.607 +0.2% +0.3% -1.1% +1.2%
RCV1 Topic-16 0.836 0.591 0.842 0.659 +0.7% +11.5% +0.8% +11.8%
RCV1 Topic-10A 0.796 0.587 0.802 0.689 +0.8% +17.4% +0.3% +16.2%
RCV1 Topic-10B 0.716 0.618 0.725 0.660 +1.3% +6.8% +1.0% +6.1%
RCV1 Topic-10C 0.687 0.604 0.697 0.627 +1.5% +3.8% +1.7% +2.3%
RCV1 Topic-10D 0.829 0.673 0.838 0.687 +1.1% +2.1% +1.2% +2.2%
RCV1 Topic-10E 0.758 0.742 0.762 0.752 +0.5% +1.3% +0.9% +1.8%

OHSUMED-10A 0.518 0.417 0.545 0.490 +5.2% +17.5% +3.9% +18.0%
OHSUMED-10B 0.656 0.500 0.667 0.529 +1.7% +5.8% +1.7% +6.8%
OHSUMED-10C 0.539 0.505 0.553 0.527 +2.6% +4.4% +1.1% +3.4%
OHSUMED-10D 0.683 0.515 0.694 0.550 +1.6% +6.8% +1.3% +6.0%
OHSUMED-10E 0.442 0.542 0.461 0.588 +4.3% +8.5% +4.5% +6.1%

20NG 0.854 0.859 +0.6% +1.0%

Movies 0.813 0.850 +4.5% +3.6%

Average +2.50% +6.84% +2.11% +6.71%

Table 5.12: The effect of feature generation using a newer Wikipedia snapshot
(dated March 26, 2006)

5.4.5 Using Inter-article links as Concept Relations

Using inter-article links for generating additional features, we observed further
improvements in text categorization performance on short documents. As we can
see in Table 5.14, in the absolute majority of cases using links to generate more
general features only is a superior strategy.
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Dataset Baseline Wikipedia Improvement
micro macro micro macro micro macro

BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.868 0.774 0.877 0.793 +1.0% +2.5%
Reuters-21578 (90 cat.) 0.793 0.479 0.803 0.506 +1.3% +5.6%

RCV1 Industry-16 0.454 0.400 0.481 0.437 +5.9% +9.2%
RCV1 Industry-10A 0.249 0.199 0.293 0.256 +17.7% +28.6%
RCV1 Industry-10B 0.273 0.292 0.337 0.363 +23.4% +24.3%
RCV1 Industry-10C 0.209 0.199 0.294 0.327 +40.7% +64.3%
RCV1 Industry-10D 0.408 0.361 0.452 0.379 +10.8% +5.0%
RCV1 Industry-10E 0.450 0.410 0.474 0.434 +5.3% +5.9%
RCV1 Topic-16 0.763 0.529 0.769 0.542 +0.8% +2.5%
RCV1 Topic-10A 0.718 0.507 0.725 0.544 +1.0% +7.3%
RCV1 Topic-10B 0.647 0.560 0.643 0.564 -0.6% +0.7%
RCV1 Topic-10C 0.551 0.471 0.573 0.507 +4.0% +7.6%
RCV1 Topic-10D 0.729 0.535 0.735 0.563 +0.8% +5.2%
RCV1 Topic-10E 0.643 0.636 0.670 0.653 +4.2% +2.7%

OHSUMED-10A 0.302 0.221 0.405 0.299 +34.1% +35.3%
OHSUMED-10B 0.306 0.187 0.383 0.256 +25.2% +36.9%
OHSUMED-10C 0.441 0.296 0.528 0.413 +19.7% +39.5%
OHSUMED-10D 0.441 0.356 0.460 0.402 +4.3% +12.9%
OHSUMED-10E 0.164 0.206 0.219 0.280 +33.5% +35.9%

20NG 0.699 0.749 +7.1%

Table 5.13: Feature generation for short documents
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Dataset Baseline Wikipedia Wikipedia Wikipedia
+ links + links

(more general
features only)

micro macro micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.868 0.774 0.877 0.793 0.878 0.796 0.880 0.801
Reuters-21578 (90 cat.) 0.793 0.479 0.803 0.506 0.804 0.506 0.809 0.507
RCV1 Industry-16 0.454 0.400 0.481 0.437 0.486 0.445 0.488 0.444
RCV1 Topic-16 0.763 0.529 0.769 0.542 0.769 0.539 0.775 0.545
20NG 0.699 0.749 0.753 0.756
Dataset Improvement Improvement Improvement

over baseline over baseline over baseline
Reuters-21578 (10 cat.) – – +1.0% +2.5% +1.2% +2.8% +1.4% +3.5%
Reuters-21578 (90 cat.) – – +1.3% +5.6% +1.4% +5.6% +2.0% +5.8%
RCV1 Industry-16 – – +5.9% +9.2% +7.1% +11.3% +7.5% +11.0%
RCV1 Topic-16 – – +0.8% +2.5% +0.8% +1.9% +1.6% +3.0%
20NG – +7.1% +7.7% +8.1%

Table 5.14: Feature generation for short documents using inter-article links
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Chapter 6

Using Feature Generation for
Computing Semantic Relatedness
of Texts

How related are “cat” and “mouse”? And what about “preparing a manuscript”
and “writing an article”? The ability to quantify semantic relatedness of texts
underlies many fundamental tasks in computational linguistics, including word
sense disambiguation, information retrieval, word and text clustering, and error
correction (Budanitsky and Hirst, 2006). Reasoning about semantic relatedness
of natural language utterances is routinely performed by humans but remains an
unsurmountable obstacle for computers. Humans do not judge text relatedness
merely at the level of text words. Words trigger reasoning at a much deeper level
that manipulates concepts—the basic units of meaning that serve humans to
organize and share their knowledge. Thus, humans interpret the specific wording
of a document in the much larger context of their background knowledge and
experience. Lacking such elaborate resources, computers need alternative ways
to represent texts and reason about them.

In this Chapter, we discuss the application of our feature generation method-
ology to automatic assessment of semantic relatedness of words and texts
(Gabrilovich and Markovitch, 2007; Gabrilovich and Markovitch, 2006a).

6.1 Explicit Semantic Analysis

In supervised text categorization, one is usually given a collection of labeled text
documents, from which one can induce a text categorizer. Consequently, words
that occur in the training examples can serve as valuable features—this is how
the bag of words approach was born. There are, however, other tasks in natural
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language processing, in which labeled training examples can hardly be produced,
because the decisions are essentially “one-off”. A notable example of such a task
is automatic assessment of semantic relatedness of words and texts. Here, given
a pair of text fragments, we need to quantify their relatedness on some scale, say,
between 0 and 1. In such cases, the very words of the text fragments are likely
to be of marginal usefulness, and when the two fragments are one word long, the
words are probably useless at all. This happens because all the data available to
us is limited to the two input fragments, which in most cases share few words, if
at all.

Besides the inappropriateness of the bag of words, another obvious conjecture
is that external knowledge is likely to be of substantial benefit for assessing se-
mantic relatedness, as this is exactly the kind of knowledge that humans apply
to this task. Therefore, we propose to apply our feature generation methodology
to the task of computing semantic relatedness. Given a pair of text fragments
whose semantic relatedness needs to be established, we use the feature generator
to construct knowledge-based features for each fragment that will replace its bag
of words. However, instead of using only a few top-scoring concepts, we now
consider all the available concepts. The role of the feature generator is, therefore,
to quantify the affinity of the input text fragment to each of the knowledge con-
cepts. The output of feature generation in this case is a vector of weights, one
per concept, which quantifies the relevance of the concept to the text fragment.
In other words, text fragments are represented in the space of all knowledge con-
cepts. Since our task is inherently not supervised, we cannot perform feature
selection in the conventional sense. Instead, we rely on the weights assigned to
the concepts in order to only select those concepts that are strongly relevant to
the input. Concepts that are marginally relevant to the input have their weights
dropped to zero, thus eliminating spurious associations.

We represent text fragments as a weighted mixture of a predetermined set
of natural concepts, which are defined by humans themselves and can be eas-
ily explained. An important advantage of our approach is thus the use of vast
amounts of highly organized human knowledge. Compared to Latent Semantic
Analysis, our methodology explicitly uses the knowledge collected and organized
by humans. Compared to lexical resources such as WordNet, our methodology
leverages knowledge bases that are orders of magnitude larger and more compre-
hensive. Importantly, the Web-based knowledge repositories we use in this work
undergo constant development so their breadth and depth steadily increase over
time.

Viewed more generally, our methodology can be seen as building a semantic
interpreter, which maps fragments of natural language text into a weighted se-
quence of concepts ordered by their relevance to the input. This way, weighted
vectors of concepts that represent input texts can be viewed as their interpretation
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vectors. The meaning of a text fragment is thus interpreted in terms of its affin-
ity with a host of knowledge concepts. Computing semantic relatedness of texts
then amounts to comparing their vectors in the space defined by the concepts,
for example, using the cosine metric (Zobel and Moffat, 1998). Our semantic
analysis is explicit in the sense that we manipulate manifest concepts grounded
in human cognition, rather than “latent concepts” used by LSA. Therefore, we
call our approach Explicit Semantic Analysis (ESA).

To speed up semantic interpretation, we build an inverted index, which maps
each word into a list of concepts in which it appears. The inverted index is
also used to discard insignificant associations between words and concepts by
removing those concepts whose weights for a given word are too low.

Given a text fragment, we first represent it as an attribute vector using tf.idf
scheme. The semantic interpreter iterates over the text words, retrieves corre-
sponding entries from the inverted index, and merges them into a weighted vector
of concepts that represents the given text. Let T = {wi} be the input text, and
let 〈vi〉 be its attribute vector, where vi is the weight of word wi. Let 〈kj〉 be an
inverted index entry for word wi, where kj quantifies the strength of association
of word wi with knowledge concept cj ∈ {c0, . . . , cn} (where n is the total number
of concepts). Then, the semantic interpretation vector V for text T is a vector
of length n, in which the weight of each concept cj is defined as

∑
wi∈T vi · kj.

Entries of this vector reflect the affinity of the corresponding concepts to text T .
Figure 6.1 illustrates the processes of building and using the semantic interpreter.

6.2 Empirical Evaluation of Explicit Semantic

Analysis

Humans have an innate ability to judge semantic relatedness of texts. Human
judgements on a reference set of text pairs can thus be considered correct by
definition, a kind of “gold standard” against which computer algorithms are eval-
uated. Several studies measured inter-judge correlations and found them to be
consistently high (Budanitsky and Hirst, 2006; Jarmasz, 2003; Finkelstein et al.,
2002a), r = 0.88 − 0.95. These findings are to be expected—after all, it is this
consensus that allows people to understand each other. Consequently, our evalua-
tion amounts to computing the correlation of ESA relatedness scores with human
judgments.
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Figure 6.1: Knowledge-based semantic interpreter

6.2.1 Test Collections

In this work, we use two datasets that to the best of our knowledge are the largest
publicly available collections of their kind.1 To assess word relatedness, we use

1Recently, Zesch and Gurevych (2006) discussed automatic creation of datasets for assessing
semantic similarity. However, the focus of their work was on automatic generation of a set of
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the WordSimilarity-353 collection (Finkelstein et al., 2002b; Finkelstein et al.,
2002a), which contains 353 word pairs. Each pair has 13–16 human judgements
made by individuals with university degrees having either mother-tongue-level
or otherwise very fluent command of the English language. Word pairs were
assigned relatedness scores on the scale from 0 (totally unrelated words) to 10
(very much related or identical words). Judgements collected for each word pair
were then averaged to produce a single relatedness score.

For document similarity, we used a collection of 50 documents from the Aus-
tralian Broadcasting Corporation’s news mail service (Lee, Pincombe, and Welsh,
2005; Pincombe, 2004). The documents were between 51 and 126 words long, and
covered a variety of topics. The judges were 83 students from the University of
Adelaide, Australia, who were paid a small fee for their work. These documents
were paired in all possible ways, and each of the 1,225 pairs has 8–12 human
judgements (averaged for each pair). To neutralize the effects of ordering, docu-
ment pairs were presented in random order, and the order of documents within
each pair was randomized as well.

Importantly, instructions for human judges in both test collections specifically
directed the participants to assess the degree of relatedness of words and texts
involved. For example, in the case of antonyms, judges were instructed to consider
them as “similar” rather than “dissimilar”.

For both test collections, we use the correlation of computer-assigned scores
with human scores to assess the algorithm performance.

6.2.2 The Effect of External Knowledge

Table 6.1 shows the results of applying our methodology to estimating related-
ness of individual words. As we can see, both ESA techniques yield substantial
improvements over previous state of the art results. Notably, ESA also achieves
much better results than another recently introduce method based on Wikipedia
(Strube and Ponzetto, 2006). We provide a detailed comparison of our approach
with this latter work in Section 7.3. Table 6.2 shows the results for computing
relatedness of entire documents.

In Section 5.4.3 we examined the effect of knowledge breadth by comparing
feature generators based on two Wikipedia versions. Here we also evaluate the
benefits of using a larger knowledge base for ESA. As we can see in both exper-
iments, using a newer Wikipedia snapshot leads to better results (although the
difference between the performance of two versions is admittedly small).

sufficiently diverse word pairs, thus relieving the humans of the need to construct word lists
manually. Obviously, establishing the “gold standard” semantic relatedness for each word pair
is still performed manually by human judges.
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Algorithm Correlation with
human judgements

WordNet-based techniques (Jarmasz, 2003) 0.33–0.35
Roget’s Thesaurus-based technique (Jarmasz, 2003) 0.55
LSA (Finkelstein et al., 2002a) 0.56
WikiRelate! (Strube and Ponzetto, 2006) 0.19–0.48
ESA-Wikipedia (March 26, 2006 version) 0.75
ESA-Wikipedia (November 11, 2005 version) 0.74
ESA-ODP 0.65

Table 6.1: Correlation of word relatedness scores with human judgements on the
WordSimilarity-353 collection

Algorithm Correlation with
human judgements

Bag of words (Lee, Pincombe, and Welsh, 2005) 0.1–0.5
LSA (Lee, Pincombe, and Welsh, 2005) 0.60
ESA-Wikipedia (March 26, 2006 version) 0.72
ESA-Wikipedia (November 11, 2005 version) 0.71
ESA-ODP 0.69

Table 6.2: Correlation of text relatedness scores with human judgements on Lee et
al.’s document collection

On both test collections, Wikipedia-based semantic interpretation is supe-
rior to the ODP-based one. We believe that two factors contribute to this phe-
nomenon. First, axes of a multi-dimensional interpretation space should ideally
be as independent as possible. The hierarchical organization of the Open Direc-
tory reflects the generalization relation between concepts and obviously violates
this independence requirement. Second, to increase the amount of training data
for building the ODP-based semantic interpreter, we crawled all the URLs listed
in the ODP. This allowed us to increase the amount of textual data by several
orders of magnitude, but also brought about a non-negligible amount of noise,
which is common in Web pages. On the other hand, Wikipedia articles are vir-
tually noise-free, and mostly qualify as Standard Written English. Thus, the
textual descriptions of Wikipedia concepts are arguably more focused than those
of the ODP concepts.
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Chapter 7

Related work

This section puts our methodology in the context of related prior work.

7.1 Beyond the Bag of Words

To date, quite a few attempts have been made to deviate from the orthodox bag
of words paradigm, usually with limited success. In particular, representations
based on phrases (Lewis, 1992a; Dumais et al., 1998; Fuernkranz, Mitchell, and
Riloff, 2000), named entities (Kumaran and Allan, 2004), and term clustering
(Lewis and Croft, 1990; Bekkerman, 2003) have been explored. However, none
of these techniques could possibly overcome the problem underlying the various
examples we reviewed in this paper—lack of world knowledge.

In mainstream Information Retrieval, query expansion techniques are used to
augment queries with additional terms. However, this approach does not enhance
queries with high-level concepts beyond words or phrases. It occasionally uses
WordNet (Fellbaum, 1998) as a source of external knowledge, but queries are
more often enriched with individual words, which are chosen through relevance
feedback (Mitra, Singhal, and Buckley, 1998; Xu and Croft, 2000), by consult-
ing dictionaries and thesauri (Voorhees, 1994; Voorhees, 1998), or by analyzing
the context around the query term (Finkelstein et al., 2002a). Ballesteros and
Croft (1997) studied query expansion with phrases in the context of cross-lingual
information retrieval.

7.2 Feature Generation for Text Categorization

Feature generation techniques were found useful in a variety of machine learning
tasks (Markovitch and Rosenstein, 2002; Fawcett, 1993; Matheus, 1991). These
techniques search for new features that describe the target concept better than
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the ones supplied with the training instances. A number of proposed feature
generation algorithms (Pagallo and Haussler, 1990; Matheus and Rendell, 1989;
Hu and Kibler, 1996; Murphy and Pazzani, 1991) led to significant improvements
in performance over a range of classification tasks. However, even though feature
generation is an established research area in machine learning, only a few works
have applied it to text processing (Kudenko and Hirsh, 1998; Mikheev, 1999;
Cohen, 2000; Scott, 1998). In contrast to our approach, these techniques did not
use any exogenous knowledge.

Kudenko and Hirsh (1998) proposed a domain-independent feature generation
algorithm that uses Boolean features to test whether certain sub-sequences appear
a minimum number of times. They applied the algorithm to three toy problems
in topic spotting and book passage categorization.

Mikheev (1999) used a feature collocation lattice as a feature generation engine
within maximum entropy framework, and applied it to document categorization,
sentence boundary detection and part-of-speech tagging. This work utilized in-
formation about individual words, bigrams and trigrams to pre-build the feature
space, and then selected a set of feature cliques with the highest log-likelihood
estimate.

Cohen (2000) conducted research on the following problem: given a set of
labeled instances not accompanied by a feature set, is it possible to automatically
discover features useful for classification according to the given labels? Problems
of this kind occur, for example, when classifying names of musical artists by music
genres, or names of computer games by categories such as quest or action. The
paper proposed to collect relevant Web pages, and then define features based on
words from HTML headers that co-occur with the names to be classified. The
fact that a word appears in an HTML header usually signifies its importance, and
hence potential usefulness for classification. The author also identified another
source of features based on positions inside HTML documents, where position is
defined as a sequence of tags in the HTML parsing tree, between the root of the
tree and the name of interest. For example, if a name frequently appears inside
tables, this characteristic may be defined as a feature.

Fuhr (1985) introduced the Darmstadt Indexing Approach (DIA), which de-
fines features as properties of terms, documents or categories, rather than mere
terms or phrases. Thus, meta information such as positions of words within
documents, document lengths or the cardinality of category training sets may
all be considered as features. Sebastiani (2002) notes that the DIA allows uni-
form usage of these new features along with conventional term- or phrase-based
representations.

Bekkerman et al. (2001) represented documents by word clusters rather than
by individual words, within the framework of the information bottleneck approach
(Pereira, Tishby, and Lee, 1993; Tishby, Pereira, and Bialek, 1999). The resulting
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clusters were then used as new features that replaced the original words.

7.2.1 Feature Generation Using Electronic Dictionaries

Several studies performed feature construction using the WordNet electronic dic-
tionary (Fellbaum, 1998) and other domain-specific dictionaries (Scott, 1998;
Urena-Lopez, Buenaga, and Gomez, 2001; Wang et al., 2003; Bloehdorn and
Hotho, 2004).

Scott (1998) attempted to augment the conventional bag-of-words represen-
tation with additional features, using the symbolic classification system Ripper
(Cohen, 1995). This study evaluated features based on syntactically1 and statis-
tically motivated phrases, as well as on WordNet synsets2. In the latter case, the
system performed generalizations using the hypernym hierarchy of WordNet, and
completely replaced a bag of words with a bag of synsets. While using hyper-
nyms allowed Ripper to produce more general and more comprehensible rules
and achieved some performance gains on small classification tasks, no perfor-
mance benefits could be obtained for larger tasks, which even suffered from some
degradation in classification accuracy. Consistent with other published findings
(Lewis, 1992a; Dumais et al., 1998; Fuernkranz, Mitchell, and Riloff, 2000), the
phrase-based representation also did not yield any significant performance bene-
fits over the bag-of-words approach.3

Urena-Lopez, Buenaga, and Gomez (2001) used WordNet in conjunction with
Rocchio (Rocchio, 1971) and Widrow-Hoff (Lewis et al., 1996; Widrow and
Stearns, 1985, Ch. 6) linear classifiers to fine-tune the category vectors. Wang et
al. (2003) used Medical Subject Headings (MeSH) (MeSH, 2003) to replace the
bag of words with canonical medical terms; Bloehdorn and Hotho (2004) used
a similar approach to augment Reuters-21578 documents with WordNet synsets
and OHSUMED medical documents with MeSH terms.

It should be noted, however, that WordNet was not originally designed to be a
powerful knowledge base, but rather a lexical database more suitable for peculiar
lexicographers’ needs. Specifically, WordNet has the following drawbacks when
used as a knowledge base for text categorization:

• WordNet has a fairly small coverage—for the test collections we used in
this paper, up to 50% of their unique words are missing from WordNet. In

1Identification of syntactic phrases was performed using a noun phrase extractor built on
top of a part of speech tagger (Brill, 1995).

2A synset is WordNet notion for a sense shared by a group of synonymous words.
3Sebastiani (2002) casts the use of bag of words versus phrases as utilizing lexical semantics

rather than compositional semantics. Interestingly, some bag-of-words approaches (notably,
KNN) may be considered context-sensitive as they do not assume independence between either
features (terms) or categories (Yang and Pedersen, 1997).

111



particular, many proper names, slang and domain-specific technical terms
are not included in WordNet, which was designed as a general-purpose
dictionary.

• Additional information about synsets (beyond their identity) is very limited.
This is because WordNet implements a differential rather than constructive
lexical semantics theory, so that glosses that accompany the synsets are
mainly designed to distinguish the synsets rather than provide a definition
of the sense or concept. Usage examples that occasionally constitute part
of the gloss serve the same purpose. Without such auxiliary information,
reliable word sense disambiguation is almost impossible.

• WordNet was designed by professional linguists who are trained to recognize
minute differences in word senses. As a result, common words have far too
many distinct senses to be useful in information retrieval (Mihalcea, 2003);
for example, the word “make” has as many as 48 senses as a verb alone. Such
fine-grained distinctions between synsets present an additional difficulty for
word sense disambiguation.

Both our approach and the techniques that use WordNet manipulate a collec-
tion of concepts. However, there are a number of crucial differences. All previous
studies only performed feature generation for individual words only. Our ap-
proach can handle arbitrarily long or short text fragments alike. Considering
words in context allows our approach to perform word sense disambiguation.
Approaches using WordNet cannot achieve disambiguation because information
about synsets is limited to merely a few words, while in both the ODP and
Wikipedia concepts are associated with huge amounts of text. Even for individ-
ual words, our approach provides much more sophisticated mapping of words to
concepts, through the analysis of the large bodies of texts associated with con-
cepts. This allows us to represent the meaning of words (or texts) as a weighted
combination of concepts, while mapping a word in WordNet amounts to simple
lookup, without any weights. Furthermore, in WordNet the senses of each word
are mutually exclusive. In our approach, concepts reflect different aspects of the
input, thus yielding weighted multi-faceted representation of the text.

In the next section we illustrate the limitations of WordNet on two specific
examples.
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7.2.2 Comparing Knowledge Sources for Feature Genera-
tion: ODP versus WordNet

To demonstrate the shortcomings of WordNet as a source for knowledge-based
feature generation, we juxtapose WordNet-based and ODP-based feature gener-
ation for two sample sentences examined in Section 5.3.1 (we repeat the ODP
context classifications for readers’ convenience). We opted to compare WordNet
with the Open Directory, since both knowledge repositories are hierarchically
organized.

We used WordNet version 1.6. In what follows, WordNet synsets are denoted
with curly braces, and noun and verb synsets are followed by their immediate
hypernym (more general synset), if applicable.

• Text: “Rumsfeld appeared with Gen. Richard Myers, chairman of the Joint
Chiefs of Staff.”

ODP classifications:

– Society/Issues/Government Operations

– Society/Politics

– Society/Issues/Warfare and Conflict/Specific Conflicts/

Iraq

– Science/Technology/Military Science

– Society/Issues/Warfare and Conflict/Weapons

– Society/History/By Region/North America/United States/

Presidents/Bush, George Walker

– Society/Politics/Conservatism

WordNet classifications:

– {Rumsfeld} → { }; (word not present in WordNet)

– {look, appear, seem} → {be}; {appear}; {appear, come out} →
{happen, materialize}; {appear, seem} → {be}; {appear, come
along}; {appear} → {perform, execute, do}

– {Gen} → {information, info}
– {Richard} → { }; (word not present in WordNet)

– {Myers} → { }; (word not present in WordNet)

– {president, chairman, chairwoman, chair, chairperson} → {presiding
officer}; {chair, chairman} → {head, lead}
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– {joint, articulation, articulatio} → {body part}; {joint} → {spot};
{articulation, join, joint, juncture, junction} → {connection, connex-
ion, link}; {roast, joint} → {cut, cut of meat}; {joint} → {junction,
conjunction}; {joint, marijuana cigarette, reefer, stick} → {cigarette,
cigaret, coffin nail, butt, fag}

– {joint} → {fit, go}; {joint, articulate} → {supply, provide, render,
furnish}; {joint} → {fasten, fix, secure}

– {joint (vs. separate)}; {joint}
– {head, chief, top dog} → {leader}; {foreman, chief, gaffer, honcho,

boss} → {supervisor}
– {staff} → {force, personnel}; {staff} → {stick}; {staff, faculty} →
{body}; {staff} → {symbol}; {staff, stave} → {musical notation}

– {staff} → {provide, supply, ply, cater}

• Text: “Herceptin is a so-called targeted therapy because of its ability to
attack diseased cells and leave healthy ones alone.”

ODP classifications:

– Health/Conditions and Diseases/Cancer/Breast

– Society/Issues/Health/Conditions and Diseases/Cancer/Al-

ternative Treatments

– Health/Support Groups/Conditions and Diseases/Cancer

WordNet classifications:

– {Herceptin} → { }; (word not present in WordNet)

– {alleged (prenominal), so-called, supposed} → {questionable (vs. un-
questionable)}

– {target, aim, place, direct, point} → {aim, take, train, take aim,
direct}

– {therapy} → {medical care, medical aid}
– {ability} → {quality}
– {ability, power} → {cognition, knowledge}
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– {attack, onslaught, onset, onrush} → {operation}; {attack} →
{turn, play}; {fire, attack, flak, blast} → {criticism, unfavor-
able judgment}; {approach, attack, plan of attack} → { concep-
tualization, conceptualisation, formulation, formularizing, formula-
rising}; {attack, attempt} → {battery, assault, assault and bat-
tery}; {attack, tone-beginning} → {beginning, start, commence-
ment}; {attack} → {affliction}; {attack, assault} → {attention, at-
tending};

– {attack, assail} → {fight, struggle}; {attack, round, assail, lash out,
snipe, assault} → {criticize, criticise, pick apart}; {attack, aggress}
→ {act, move}; {assail, assault, set on, attack}; {attack} → {begin,
get, start out, start, set about, set out, commence}; {attack} →
{affect}

– {assault (prenominal), attack (prenominal)} → {offensive (vs. defen-
sive)};

– {diseased, morbid, pathologic, pathological} → {unhealthy (vs.
healthy)};

– {cell} → {compartment}; {cell} → {entity, something}; {cell, elec-
tric cell} → {electrical device}; {cell, cadre} → {political unit}; {cell,
cubicle} → {room}; {cell, jail cell, prison cell} → {room}

– {leave, leave of absence} → {time off}; {leave} → {permission};
{farewell, leave, leave-taking, parting} → {departure, going, going
away, leaving};

– {leave, go forth, go away}; (16 more verb senses omitted for brevity)

– {healthy (vs. unhealthy)}; {healthy} → {sound (vs. unsound)};
{healthy, salubrious, good for you (predicate)} → {wholesome (vs.
unwholesome)}; {fit (vs. unfit), healthy} → {able, able-bodied};
{healthy, intelligent, levelheaded, sound} → {reasonable (vs. unrea-
sonable), sensible};

– {one, 1, I, ace, single, unity} → {digit}; {one} → {unit}
– {alone (predicate)} → {unsocial (vs. social)}; {alone (predicate),

lone (prenominal), lonely (prenominal), solitary} → {unaccompanied
(vs. accompanied)}; {alone (predicate), only} → {exclusive (vs. in-
clusive)}; {alone (predicate), unique, unequaled, unequalled, unpar-
alleled} → {incomparable (vs. comparable), uncomparable}

– {entirely, exclusively, solely, alone, only}; {alone, unaccompanied}
Evidently, WordNet classifications are overly general and diverse because con-

text words cannot be properly disambiguated. Furthermore, owing to lack of
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proper names, WordNet cannot possibly provide the wealth of information en-
coded in the Open Directory, which easily overcomes the drawbacks of WordNet.
Crawling all the Web sites cataloged in the Open Directory results in exception-
ally wide word coverage. Furthermore, the crawled texts provide a plethora of
information about each ODP concept.

7.2.3 Using Unlabeled Examples

To the best of our knowledge, with the exception of the above studies that used
WordNet, there have been no attempts to date to automatically use large-scale
repositories of structured background knowledge for feature generation. An in-
teresting approach to using non-structured background knowledge was proposed
by Zelikovitz and Hirsh (2000). This work uses a collection of unlabeled examples
as intermediaries in comparing testing examples with the training ones. Specif-
ically, when an unknown test instance does not appear to resemble any labeled
training instances, unlabeled examples that are similar to both may be used as
“bridges.” Using this approach, it is possible to handle the situation where the
training and the test document have few or no words in common. The unlabeled
documents are utilized to define a cosine similarity metric, which is then used
by the KNN algorithm for actual text categorization. This approach, however,
suffers from efficiency problems, as looking for intermediaries to compare every
two documents makes it necessary to explore a combinatorial search space.

In a subsequent paper, Zelikovitz and Hirsh (2001) proposed an alternative
way to use unlabeled documents as background knowledge. In this work, unla-
beled texts are pooled together with the training documents to compute a Latent
Semantic Analysis (Deerwester et al., 1990) model. LSA analyzes a large cor-
pus of unlabeled text, and automatically identifies so-called “latent concepts”
using Singular Value Decomposition. The resulting LSA metric then facilitates
comparison of test documents to training documents. The addition of unlabeled
documents significantly increases the amount of data on which word cooccurrence
statistics is estimated, thus providing a solution to text categorization problems
where training data is particularly scarce. However, subsequent studies found
that LSA can rarely improve the strong baseline established by SVM, and often
even results in performance degradation (Wu and Gunopulos, 2002; Liu et al.,
2004). In contrast to LSA, which manipulates virtual concepts, our methodology
relies on using concepts identified and described by humans.

In Section 6.2 we reported the results of applying our methodology to the
problem of computing semantic relatedness of words and texts, for which previous
state of the art results have been based on LSA. To this end, we formulated
Explicit Semantic Analysis (ESA), which represents fragments of text in the space
of knowledge concepts defined in the Open Directory or in Wikipedia. Compared
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with the existing state of the art, using ESA resulted in substantial improvements
in correlation of computed relatedness scores with human judgments. These
findings prove that the benefits of using distilled human knowledge are much
greater than merely using cooccurrence statistics gathered from a collection of
auxiliary unlabeled texts.

7.2.4 Other Related Studies

There have been numerous previous attempts to add knowledge to machine learn-
ing techniques. Transfer learning approaches (Bennett, Dumais, and Horvitz,
2003; Do and Ng, 2005; Raina, Ng, and Koller, 2006) leverage information from
different but related learning tasks. Pseudo-relevance feedback (Ruthven and Lal-
mas, 2003) uses information from the top-ranked documents, which are assumed
to be relevant to the query; for example, characteristic terms from such documents
may be used for query expansion (Xu and Croft, 1996). Recent studies on semi-
supervised methods (Goldberg and Zhu, 2006; Ando and Zhang, 2005a; Ando and
Zhang, 2005b) infer information from unlabeled data, which is often available in
much larger amounts than labeled data. However, all these approaches amount
to using shallow cooccurrence-style knowledge. On the other hand, the methods
we propose in this thesis use much deeper knowledge cataloged by humans, which
comes in the form of concepts that correspond to the nodes of the Open Directory
or to the articles of Wikipedia.

While our approach relies on existing repositories of classified knowledge, there
is a large body of research on extracting facts through Web mining (Cafarella et
al., 2005; Etzioni et al., 2004), so it would be interesting to consider using such ex-
tracted facts to drastically increase the amount of available knowledge, especially
when measures are taken to ascertain correctness of the extracted information
(Downey, Etzioni, and Soderland, 2005).

Our use of local contexts to facilitate fine-grained feature generation is reminis-
cent of the intra-document dynamics analysis proposed by Gabrilovich, Dumais,
and Horvitz (2004) for characterization of news article types. The latter work
manipulated sliding contextual windows of the same size to make their scores di-
rectly comparable. As we showed in Section 5.3.3, the multi-resolution approach,
which operates at several levels of linguistic abstraction, is superior to fixed-size
windows for the case of text categorization. Incidentally, the term “Local Context
Analysis” is also used in an entirely different branch of Information Retrieval. Xu
and Croft (2000) used this term to refer to a particular kind of query expansion,
where a query is expanded in the context of top-ranked retrieved documents.

In our methodology, the feature generator is implemented as a text classi-
fier that maps local document contexts onto knowledge concepts, which then
serve as additional document features. This approach is similar to the use of
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classifiers as features. Bennett, Dumais, and Horvitz (2005) used the reliability-
indicator methodology (Toyama and Horvitz, 2000) to combine several regular
text classifiers (decision tree, SVM, Naive Bayes and unigram) with the aid of a
meta-classifier.

Our approach that uses structured background knowledge is somewhat remi-
niscent of explanation-based learning (Mitchell, Keller, and Kedar-Cabelli, 1986;
Dejong and Mooney, 1986), where generalizations of previously seen examples are
reused in future problem solving tasks, thus mimicking humans’ ability to learn
from a single example.

7.3 Semantic Similarity and Semantic Related-

ness

In this thesis we dealt with “semantic relatedness” rather than “semantic sim-
ilarity” or “semantic distance”, which are also often used in the literature. In
their extensive survey of relatedness measures, Budanitsky and Hirst (2006) ar-
gued that the notion of relatedness is more general than that of similarity, as the
former subsumes many different kind of specific relations, including meronymy,
antonymy, functional association, and others. They further maintained that com-
putational linguistics applications often require measures of relatedness rather
than the more narrowly defined measures of similarity. For example, word sense
disambiguation can use any related words from the context, and not merely sim-
ilar words. Budanitsky and Hirst (2006) also argued that the notion of semantic
distance might be confusing due to the different ways it has been used in the
literature.

Prior work on computing semantic relatedness pursued three main directions:
comparing text fragments as bags of words in vector space (Baeza-Yates and
Ribeiro-Neto, 1999; Rorvig, 1999), using lexical resources, and using Latent Se-
mantic Analysis (Deerwester et al., 1990). The former technique is the simplest,
but performs sub-optimally when the texts to be compared share few words, for
instance, when the texts use synonyms to convey similar messages. This tech-
nique is also trivially inappropriate for comparing individual words. The latter
two techniques attempt to circumvent this problem.

Lexical databases such as WordNet (Fellbaum, 1998) or Roget’s Thesaurus
(Roget, 1852) encode relations between words such as synonymy, hypernymy,
and meronymy. Quite a few metrics have been defined that compute related-
ness using various properties of the underlying graph structure of these resources
(Budanitsky and Hirst, 2006; Jarmasz, 2003; Resnik, 1999; Lin, 1998; Jiang and
Conrath, 1997). The obvious drawback of this approach is that creation of lexi-
cal resources requires lexicographic expertise as well as a lot of time and effort,
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and consequently such resources cover only a small fragment of the language lexi-
con. Specifically, such resources contain few proper names, neologisms, slang, and
domain-specific technical terms. Furthermore, these resources have strong lexi-
cal orientation in that they predominantly contain information about individual
words, but little world knowledge in general.

On the other hand, LSA (Deerwester et al., 1990) is a purely statistical tech-
nique, which leverages word cooccurrence information from a large unlabeled
corpus of text. LSA does not rely on any human-organized knowledge; rather,
it “learns” its representation by applying Singular Value Decomposition to the
words-by-documents cooccurrence matrix. LSA is essentially a dimensionality re-
duction technique that identifies a number of most prominent dimensions in the
data, which are assumed to correspond to “latent concepts”. Meanings of words
and documents are then compared in the space defined by these concepts. Latent
semantic models are notoriously difficult to interpret, since the computed con-
cepts cannot be readily mapped into natural concepts manipulated by humans.
The Explicit Semantic Analysis method we proposed circumvents this problem,
as it represents meanings of text fragments using natural concepts defined by
humans.

Our approach to estimating semantic relatedness of words is somewhat rem-
iniscent of distributional (or co-occurrence) similarity (Lee, 1999; Dagan, Lee,
and Pereira, 1999). Indeed, we compare the meanings of words by comparing
the occurrence patterns across a large collection of natural language documents.
However, the compilation of these documents is not arbitrary, rather, the docu-
ments are aligned with encyclopedia articles, while each of them is focused on a
single topic. Furthermore, distributional similarity methods are inherently suit-
able for comparing individual words, while our method can compute similarity of
arbitrarily long texts.

Prior work in the field mostly focused on semantic similarity of words, us-
ing R&G (Rubenstein and Goodenough, 1965) list of 65 word pairs and M&C
(Miller and Charles, 1991) list of 30 word pairs. When only the similarity relation
is considered, using lexical resources was often successful enough, reaching the
correlation of 0.70–0.85 with human judgements (Budanitsky and Hirst, 2006;
Jarmasz, 2003). In this case, lexical techniques even have a slight edge over ESA-
Wikipedia, whose correlation with human scores is 0.723 on M&C and 0.816 on
R&G.4 However, when the entire language wealth is considered in an attempt to
capture more general semantic relatedness, lexical techniques yield substantially
inferior results (see Table 6.1). WordNet-based techniques, which only consider
the generalization (“is-a”) relation between words, achieve correlation of only
0.33–0.35 with human judgements (Budanitsky and Hirst, 2006; Jarmasz, 2003).

4WikiRelate! (Strube and Ponzetto, 2006) achieved relatively low scores of 0.31–0.54 on
these domains.
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Jarmasz & Szpakowicz’s ELKB system (Jarmasz, 2003) based on Roget’s The-
saurus (Roget, 1852) achieves a higher correlation of 0.55 due to its use of a richer
set of relations.

Studying semantic similarity and relatedness of words is related to assessing
the similarity of relations. An example of this task is to establish that word pairs
carpenter:wood and mason:stone are relationally similar, as the words in both
pairs stand in the same relation (profession:material). State of the art results
on relational similarity are based on Latent Relational Analysis (Turney, 2006;
Turney, 2005).

Sahami and Heilman (2006) proposed to use the Web as a source of additional
knowledge for measuring similarity of short text snippets. To this end, they
defined a kernel function that sends two snippets as queries to a search engine,
and compares the bags of words for the two sets of returned documents. A major
limitation of this technique is that it is only applicable to short texts, because
sending a long text as a query to a search engine is likely to return few or even
no results at all. On the other hand, our approach is applicable to text fragments
of arbitrary length.

The above-mentioned WordNet-based techniques are inherently limited to in-
dividual words, and their adaptation for comparing longer texts requires an extra
level of sophistication (Mihalcea, Corley, and Strapparava, 2006). In contrast,
our method treats both words and texts in essentially the same way.

A recent paper by Strube and Ponzetto (2006) also used Wikipedia for com-
puting semantic relatedness. However, their method, called WikiRelate!, is radi-
cally different from ours. Given a pair of words w1 and w2, WikiRelate! searches
for Wikipedia articles, p1 and p2, that respectively contain w1 and w2 in their
titles. Semantic relatedness is then computed based on various distance mea-
sures between p1 and p2. These measures either rely on the texts of the pages,
or path distances within the category hierarchy of Wikipedia. Our approach, on
the other hand, represents each word as a weighted vector of Wikipedia concepts.
Semantic relatedness is then computed by comparing the two concept vectors.

Thus, the differences between the two approaches are:

1. WikiRelate! can only process words that actually occur in titles of
Wikipedia articles. ESA only requires that the word appears within the
text of Wikipedia articles.

2. WikiRelate! is limited to single words while ESA can compare texts of any
length.

3. WikiRelate! represents the semantics of a word by either the text of the
article associated with it, or by the node in the category hierarchy. ESA
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has a much more structured semantic representation consisting of a vector
of Wikipedia concepts.

Indeed, as we have shown in Section 6.2, the richer representation of ESA
yields much better results.
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Chapter 8

Conclusions

In this thesis we proposed a feature generation methodology for textual informa-
tion retrieval. In order to render machine learning algorithms with common-sense
and domain-specific knowledge of humans, we use very large-scale knowledge
repositories to build a feature generator. These knowledge repositories, which
have been manually crafted by human editors, provide a fully automatic way to
tap into the collective knowledge of tens and hundreds of thousands of people.
The feature generator analyzes document text and augments the conventional
bag of words representation with relevant concepts from the knowledge reposi-
tory. The enriched representation contains information that cannot be deduced
from the document text alone.

In Section 2.2 we listed several limitations of the bag of words approach, and
in the subsequent sections we showed how they are resolved by our methodology.
In particular, external knowledge allows us to reason about words that appear
in the testing set but not in the training set. We use hierarchically organized
knowledge to make powerful generalizations, making it possible to know that
certain infrequent words belong to more general classes of words. Externally
supplied knowledge can also help in those cases when some information vital for
classification is omitted from training texts because it is assumed to be shared
by the target readership.

In this work we instantiated our feature generation methodology with two spe-
cific knowledge repositories, the Open Directory Project and the Wikipedia en-
cyclopedia. We succeeded to make use of an encyclopedia without deep language
understanding, specially crafted inference rules or relying on additional common-
sense knowledge bases. This was made possible by applying standard text clas-
sification techniques to match document texts with relevant Wikipedia articles.
The Wikipedia-based results are superior to the ODP-based ones on a number
of datasets, and are comparable to it on others. Moreover, using Wikipedia im-
poses fewer restrictions on suitable knowledge repositories, and does not assume
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the availability of an ontology. In our future work, we intend to study possi-
ble ways for combining two or more knowledge repositories for improving text
categorization performance even further.

We also described multi-resolution analysis, which examines the document
text at several levels of linguistic abstraction and performs feature generation at
each level. When polysemous words are considered in their native context, word
sense disambiguation is implicitly performed. Considering local contexts allows
the feature generator to cope with word synonymy and polysemy. Furthermore,
when the document text is processed at several levels of granularity, even briefly
mentioned aspects can be identified and used. These might easily have been
overlooked if the document were processed as one large chunk of text.

Empirical evaluation definitively confirmed the value of knowledge-based fea-
ture generation for text categorization across a range of datasets. Recently,
the performance of the best text categorization systems became similar, as if
a plateau has been reached, and previous work mostly achieved small improve-
ments. Using the ODP and Wikipedia allowed us to reap much greater benefits
and to bring text categorization to a qualitatively new level of performance, with
double-digit improvements observed on a number of datasets. Given the domain-
specific nature of some test collections, we also compared the utility of narrow
domain-specific knowledge with that of larger amounts of information covering
all branches of knowledge (Section 5.3.4). Perhaps surprisingly, we found that
even for narrow-scope test collections, a wide coverage knowledge base yielded
substantially greater improvements than its domain-specific subsets. This obser-
vation reinforces the breadth hypothesis, formulated by Lenat and Feigenbaum
(1990), that “to behave intelligently in unexpected situations, an agent must be
capable of falling back on increasingly general knowledge.”

We also applied our feature generation methodology to the problem of au-
tomatically assessing semantic relatedness of words and texts. To this end, we
presented a novel technique, called Explicit Semantic Analysis, for represent-
ing semantics of natural language texts using natural concepts. In contrast to
existing methods, ESA offers a uniform way for computing relatedness of both
individual words and arbitrarily long text fragments. Moreover, using natural
concepts makes the ESA model easy to interpret, as can be seen in the examples
we provided. Compared with the previous state of the art, using ESA results in
substantial improvements in correlation of computed relatedness scores with hu-
man judgements: from r = 0.56 to 0.75 for individual words and from r = 0.60 to
0.72 for texts. Consequently, we anticipate ESA to give rise to the next generation
of natural language processing tools.

We believe that this research constitutes a step towards the long-standing
aspiration of Artificial Intelligence to endow natural language processing with
humans’ knowledge about the world. However, our study only scratches the
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surface of what can be achieved with knowledge-rich features. In our future
work, we plan to investigate new algorithms for mapping document contexts
onto knowledge concepts, as well as new techniques for selecting attributes that
are most characteristic of every concept. We intend to apply focused crawling to
collect only relevant Web pages when cataloged URLs are crawled; we also plan
to apply page segmentation techniques to eliminate noise from crawled pages (Yu
et al., 2003). In this work we capitalized on inter-article links of Wikipedia in
several ways, including the use of anchor text and the number of incoming links
for each article, as well as creating additional features from linked concepts. In
our future work we intend to investigate more elaborate techniques for leveraging
the high degree of cross-linking between Wikipedia articles.

The Wiki technology underlying the Wikipedia project is often used nowadays
in a variety of open-editing initiatives. These include corporate intranets that
use Wiki as a primary documentation tool, as well as numerous domain-specific
encyclopedias on topics ranging from mathematics to Orthodox Christianity.1

Therefore, we believe our methodology may be used for augmenting document
representation in domains for which no ontologies exist. It is also essential to
note that Wikipedia is available in numerous languages, while different language
versions are cross-linked at the level of concepts. We believe this information
can be leveraged to use Wikipedia-based semantic interpretation for improving
machine translation.

In addition to the ODP and Wikipedia, we also plan to make use of additional
knowledge repositories. Among domain-specific knowledge bases, it would be par-
ticularly interesting to use the Medical Subject Headings (MeSH) hierarchy to
improve classification of biomedical documents. Recently, several projects have
been launched that intend to digitize large numbers of books. The largest and ar-
guably best known among these projects are Google Print2 and Amazon’s Search
Inside the Book3. If the content of numerous books is made available for research
purposes, it would be extremely interesting to use their text in conjunction with
one of the library classification schemes (e.g., UDC) to build a book-based feature
generator.

Over the recent years, collaborative tagging projects (also known as folk-
sonomies) became widespread on the Internet (Marlow et al., 2006). We believe
it would be very interesting to use the data accumulated through these tagging
efforts as knowledge sources for feature generation. This way, we would use tags
as concepts, and the tagged textual objects (such as blog postings and Web pages)
as material for learning the scope of these concepts.

1See http://en.wikipedia.org/wiki/Category:Online encyclopedias for a
longer list of examples.

2http://books.google.com
3http://www.amazon.com/Search-Inside-Book-Books/b?ie=UTF8&node=10197021
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We conjecture that knowledge-based feature generation will also be useful
for other information retrieval tasks beyond text categorization, and we intend
to investigate this in our future work. Specifically, we intend to apply feature
generation to information search and word sense disambiguation. In the search
scenario, we are studying ways to augment both queries and documents with gen-
erated features. This way, documents will be indexed in the augmented space of
words and concepts. Current approaches to word sense disambiguation represent
contexts that contain ambiguous words using the bag of words augmented with
part-of-speech information. We believe representation of such contexts can be
greatly improved if we use feature generation to map these contexts into relevant
knowledge concepts. Anecdotal evidence (such as the examples presented in Sec-
tions 5.3.1 and 5.4.1) implies our method has much promise for improving the
state of the art in word sense disambiguation.

In its present form, our method can inherently be applied only for improving
representation of textual documents. Indeed, to date we applied our feature gen-
eration methodology for improving the performance of text categorization and for
computing semantic relatedness of texts. However, we believe our approach can
also be applied beyond mere text, as long as the objects to be manipulated are ac-
companied with some textual description. As an example, consider a collection of
medical records containing test results paired with narrative reports. Performing
feature generation from narrative reports is likely to produce pertinent concepts
that can be used for augmenting the original record. Indeed, prior studies (Hripc-
sak et al., 1995) showed that natural language processing techniques can be used
to extract vital information from narrative reports in automated decision-support
systems.
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Appendix A

Text Categorization with Many
Redundant Features: Using
Aggressive Feature Selection to
Make SVMs Competitive with
C4.5

Text categorization algorithms usually represent documents as bags of words and
consequently have to deal with huge numbers of features. Most previous studies
found that the majority of these features are relevant for classification, and that
the performance of text categorization with support vector machines peaks when
no feature selection is performed. We describe a class of text categorization
problems that are characterized with many redundant features. Even though most
of these features are relevant, the underlying concepts can be concisely captured
using only a few features, while keeping all of them has substantially detrimental
effect on categorization accuracy. We develop a novel measure that captures
feature redundancy, and use it to analyze a large collection of datasets. We show
that for problems plagued with numerous redundant features the performance of
C4.5 is significantly superior to that of SVM, while aggressive feature selection
allows SVM to beat C4.5 by a narrow margin.

A.1 Introduction

Text categorization deals with assigning category labels to natural language doc-
uments. Categories come from a fixed set of labels, and each document may
be assigned one or more categories. The absolute majority of works in the field
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employ the so-called “bag of words” approach and use plain language words as
features (Sebastiani, 2002). Using a bag of words usually leads to an explosion
in the number of features, so that even moderately-sized test collections often
have thousands or even tens of thousands of features. In such high-dimensional
spaces, feature selection (FS) is often necessary to reduce noise and avoid overfit-
ting. Prior studies found support vector machines (SVM) and K-Nearest Neigh-
bor (KNN) to be the best performing algorithms for text categorization (Dumais
et al., 1998; Yang and Liu, 1999).

Joachims (1998) found that support vector machines are very robust even in
the presence of numerous features, and further observed that the multitude of
text features are indeed useful for text categorization. To substantiate this claim,
Joachims used a Naive Bayes classifier with feature sets of increasing size, where
features were first ordered by their discriminative capacity (using the information
gain criterion), and then the most informative features were removed. The clas-
sifier trained on the remaining “low-utility” features performed markedly better
than random labeling of documents with categories, thus implying that all fea-
tures are relevant and should be used. These findings were later corroborated in
more recent studies (Brank et al., 2002; Rogati and Yang, 2002) that observed
either no improvement or even small degradation of SVM performance after fea-
ture selection. On the 20 Newsgroups collection (Lang, 1995), which is one of the
standard text categorization datasets, feature selection significantly degrades the
accuracy of SVM classification (Bekkerman, 2003) due to a very large and diver-
sified vocabulary of newsgroup postings. Consequently, many later works using
SVMs did not perform any feature selection at all (Leopold and Kindermann,
2002; Lewis et al., 2004).

In this paper we describe a class of text categorization problems that are
characterized by many redundant features. The corresponding datasets were col-
lected in the course of our prior work (Davidov, Gabrilovich, and Markovitch,
2004), where we proposed a methodology for parameterized generation of labeled
datasets for text categorization based on the Open Directory Project (ODP).
Further details on parameterized generation of labeled datasets can be found in
Appendix B. In our present work we use a subset of 100 datasets whose catego-
rization difficulty (as measured by baseline SVM accuracy) is evenly distributed
from very easy to very hard. We observed that even though the datasets differ
significantly in their difficulty, many of them are comprised of categories that
can be told apart using a small number of words. For example, consider dis-
tinguishing the documents about Boulder, Colorado, from those about Dallas,
Texas. A few proper names of local landmarks and a handful of words describing
local industries and other peculiarities often suffice to distinguish texts about
the two cities. Given these discriminators, other words add little differentiation
power, and are therefore redundant. As we show in Section A.3, support vector
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machines—which are usually quite robust in the presence of many features—do
not fare well when a few good discriminators are vastly outnumbered by features
with little additional differentiation power.

We further demonstrate that on such datasets C4.5 significantly outperforms
SVM and KNN, although the latter are usually considered substantially superior
text classifiers. When no feature selection is performed, C4.5 constructs small
decision trees that capture the concept much better then either SVM or KNN.
Surprisingly, even when feature selection is optimized for each classifier, C4.5
formulates a powerful classification model, significantly superior to that of KNN
and only marginally less capable than that of SVM. We also show the crucial
importance of aggressive feature selection for this class of problems on a different
document representation. In this experiment we extend the conventional bag
of words with features constructed using the WordNet electronic dictionary by
generalizing original words; again, SVM performance steadily increases as fewer
features are selected.

To account for this phenomenon, we developed a novel measure that predicts
feature redundancy in datasets. This measure analyzes the distribution of features
by their information gain, and reliably predicts whether feature selection will be
beneficial or harmful for a given dataset. Notably, computation of this measure
does not require to actually build a classifier, nor to invoke it on a validation set
to determine an optimal feature selection level.

The main contributions of this paper are threefold. First, we describe a class of
text categorization problems that have many redundant features, and for which
aggressive feature selection is essential to achieve decent level of SVM perfor-
mance. The existence of such class of problems is in contrast to most of prior
research in text categorization, which found the majority of features (except the
rarest ones) to be relevant, and specifically beneficial for SVM classification. Sec-
ond, we use two different feature sets to show that without an aggressive feature
selection, SVM classification is substantially inferior to that of C4.5, which was
previously shown to be a less capable text classifier. Finally, we develop a mea-
sure that, given a dataset, predicts whether feature selection would be beneficial
for it. This measure performs outlier detection in the distribution of features by
information gain, without actually classifying the documents.

A.2 Experimental Methodology

We conducted a series of experiments to explore the utility of feature selection
for datasets plagued with redundant features. In what follows, we first describe
the construction of the datasets used in the experiments, and then proceed to
developing a measure that predicts the utility of feature selection for a given
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dataset.

A.2.1 Datasets

Acquiring datasets for text categorization based on Web directories has been often
performed in prior studies, which used Yahoo! (Mladenic and Grobelnik, 1998b),
ODP (Chakrabarti et al., 2002; Cohen et al., 2002) and the Hoover’s Online
company database (Yang, Slattery, and Ghani, 2002). This approach allows to
eliminate the huge manual effort required to actually label the documents, by
first selecting a number of categories (= directory nodes) to define the labels,
and then collecting the documents from the subtrees rooted at these categories
to populate the dataset.

In our prior work (Davidov, Gabrilovich, and Markovitch, 2004) we de-
veloped a methodology for automatically acquiring labeled datasets for text
categorization from hierarchical directories of documents, and implemented a
system that performed such acquisition based on the Open Directory Project
(http://dmoz.org). In the present paper we use a subset of 100 datasets ac-
quired using this methodology. Each dataset consists of a pair of ODP categories
with an average of 150 documents, and corresponds to a binary classification task
of telling these two categories apart (documents are single-labeled, that is, ev-
ery document belongs to exactly one category). When generating datasets from
Web directories, where each category contains links to actual Internet sites, we
construct text documents representative of those sites. Following the scheme in-
troduced by Yang, Slattery, and Ghani (2002), each link cataloged in the ODP is
used to obtain a small representative sample of the target Web site. To this end,
we crawl the target site in BFS order, starting from the URL listed in the direc-
tory. A predefined number of Web pages (5 in this work) are downloaded, and
concatenated into a synthetic document, which is then filtered to remove HTML
markup; the average document size after filtering is 11.2 Kilobytes.

The datasets vary significantly by their difficulty for text categorization, and
baseline SVM accuracy obtained on them is nearly uniformly distributed between
0.6 and 0.92. To list a few examples, datasets in our collection range from easy
ones containing such pairs of ODP categories as Games/Video Games/Shooter

and Recreation/Autos/Makes and Models/Volkswagen, to medium difficulty
ones with Arts/Music/Bands and Artists vs. Arts/Celebrities, to hard
ones such as Regional/North America/United States/Virginia/Richmond/

Business and Economy vs. Regional/North America/United States/Florida/

Fort Myers/Business and Economy. The full collection of 100 datasets, along with
additional statistics and all the raw data used in our experiments is available at
http://techtc.cs.technion.ac.il/techtc100 .
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A.2.2 Predicting the Utility of Feature Selection

In Section A.3 we show that the majority of datasets we used in this study benefit
greatly from aggressive feature selection. We conjectured that these datasets have
a small number of features that together allow to learn the underlying concept
concisely, while the rest of the features do more harm than good. To understand
this phenomenon, we examined the distribution of features in each dataset by
their information gain.

Figure A.1 shows this distribution for several sample datasets.1 Empirically,
we observed that datasets with feature distribution similar to Dataset 46 benefit
from feature selection immensely (for this particular dataset, aggressive feature
selection improved SVM accuracy from 0.60 to 0.93). Such datasets have several
features with high information gain, while the rest of their features have markedly
lower IG scores. In contrast to these, datasets similar to Dataset 1 are charac-
terized with smooth spectrum of IG values—in such cases feature selection will
often eliminate features that carry essential information; indeed, for this dataset
feature selection caused SVM accuracy to drop from 0.86 to 0.74. For comparison,
we show a similarly looking graph for the 20 Newsgroups (20NG) dataset, which
is often used for text categorization experiments and for which feature selection
was found particularly harmful (Bekkerman, 2003).

Interestingly, high IG values of best-scoring features do not necessarily im-
ply that feature selection will substantially improve the accuracy. For instance,
Dataset 31 has several features with very high information gain, but its IG graph
declines gracefully over subsequent features, and does not fall as sharp as for
Dataset 46. Consequently, feature selection only improves SVM accuracy from
0.92 to 0.95—a much more modest gain than for Dataset 46. On the other hand,
Dataset 61 has somewhat lower initial IG values, but its IG graph declines very
sharply. Feature selection was shown to be of high utility for this dataset as well,
boosting the accuracy from 0.64 to 0.84.

The above results imply that the absolute values of information gain are of
less importance than the speed of decline of IG values across features. To quan-
tify this phenomenon, we need to assess the number of outliers—features whose
information gain is highly above that of all other features. Under this definition
the desired measure becomes easy to formulate. We first compute the information
gain for all features, and then count the number of features whose information
gain is higher than 3 standard deviations above the average. Although the un-
derlying distribution cannot be assumed to be normal, this familiar statistical
criterion works very reliably in practice. Formally, let D be a dataset and let F

1Dataset ids refer to the full listing table at http://techtc.cs.technion.ac.il/techtc100 .

131



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  10  20  30  40  50

In
fo

rm
at

io
n 

ga
in

Features sorted by information gain
(only first 50 features are shown)

Dataset 46
Dataset   1
Dataset 31
Dataset 61

20NG

Figure A.1: Distribution of features by IG in several datasets

be a set of its features. We define the Outlier Count (OC) as

OC(D,F) = |{f ∈ F : IG(f) > µIG + 3 · σIG }| ,

where µIG and σIG are the average and standard deviation of information gain
of the features in F . In Section A.3 we show that Outlier Count reliably predicts
the utility of feature selection for a variety of datasets.

A.2.3 Extended Feature Set Based on WordNet

Several studies in text categorization performed feature construction using the
WordNet electronic dictionary (Fellbaum, 1998). In this work we show that
aggressive feature selection can significantly improve categorization accuracy for
document representation extended with constructed features.

Scott and Matwin (1999), and later Wermter and Hung (2002), used WordNet
to change document representation from a bag of words to a bag of synsets
(WordNet notion of concepts), by using the hypernymy relation to generalize
word senses. Since many words are not found in WordNet (e.g., neologisms,
narrow technical terms, and proper names), we opted for extending a bag of
words with WordNet-based features rather than completely changing document
representation to a bag of synsets. To this end, we first perform feature generation
by generalizing document words using WordNet, and then decimate the generated
features through feature selection. In Section A.3.4 we demonstrate that feature
selection is as important for generated features as it is for regular features (plain
language words).
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A.2.4 Feature Selection Algorithms

A variety of feature selection techniques have been tested for text categorization,
while Information Gain, χ2, Document Frequency (Yang and Pedersen, 1997;
Rogati and Yang, 2002), Bi-Normal Separation (Forman, 2003) and Odds Ratio
(Mladenic, 1998a) were reported to be the most effective. Adopting the prob-
abilistic notation from Sebastiani (2002), we use P (tk, ci) to denote the joint
probability that a random document contains term tk and belongs to category ci,
and N to denote the number of training documents. The above feature selection
techniques are then defined as follows:

1. Information Gain (IG):∑
c∈{ci,ci}

∑
t∈{tk,tk} P (t, c) · log P (t,c)

P (t)P (c)

2. χ2 (CHI): N · P (tk,ci)P (tk,ci)−P (tk,ci)P (tk,ci)

P (tk)P (tk)P (ci)P (ci)

3. Document Frequency (DF): N · P (tk)

4. Bi-Normal Separation (BNS):
|F−1(P (tk|ci))−F−1(P (tk|ci))|, where F is the cumulative probability func-
tion of the standard Normal distribution

5. Odds Ratio (OR): P (tk|ci)·(1−P (tk|ci))
(1−P (tk|ci))·P (tk|ci)

6. Random (RND)

Actual feature selection is performed by selecting the top scoring features, us-
ing either a predefined threshold on the feature score or a fixed percentage of
all the features available. In addition to these “principled” selection schemes,
we unconditionally remove stop words and words occurring in less than three
documents.

A.2.5 Classification Algorithms and Measures

We used the datasets described in Section A.2.1 to compare the performance of
Support Vector Machines (Vapnik, 1995), C4.5 (Quinlan, 1993), and K-Nearest
Neighbor (Duda and Hart, 1973). In this work we used the SV M light implemen-
tation (Joachims, 1999a) with a linear2 kernel.

We used classification accuracy as a measure of text categorization perfor-
mance. Studies in text categorization usually work with multi-labeled datasets

2Joachims (1998) observed that most text categorization problems are linearly separable, and
consequently most studies in the field used a linear SVM kernel (Bekkerman, 2003; Forman,
2003; Brank et al., 2002).
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in which each category has much fewer positive examples than negative ones.
In order to adequately reflect categorization performance in such cases, other
measures of performance are conventionally used (Sebastiani, 2002), including
precision, recall, F1, and precision-recall break-even point (BEP). However, for
single-labeled datasets all these measures can be proved to be equal to accuracy,
which is the measure of choice in the machine learning community.

A.3 Empirical Evaluation

In this section we evaluate the role of feature selection for several classification
algorithms operating on datasets with many redundant features. We conducted
the experiments using a text categorization platform of our own design and de-
velopment called Hogwarts. All accuracy values reported below were obtained
using 4-fold cross-validation scheme.

When working with support vector machines, it is essential to perform ade-
quate parameter tuning. In the case of a linear kernel (and under the assumption
of equal cost of errors on positive and negative examples), the only relevant
parameter is C, namely, the trade-off between training error and margin. To
optimize this parameter, we set aside one fold of the training data as a validation
set, and for each feature selection level selected the best C value from among
{10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}.

A.3.1 Validation of Hogwarts Performance

In this section we demonstrate that the results of classifying existing datasets
with Hogwarts are consistent with those in other published studies. Figure A.2
shows the results of using SVM in conjunction with IG feature selection to classify
three datasets frequently used in text categorization studies: 10 largest categories
of Reuters-21578 (Reuters, 1997), 20 Newsgroups (Lang, 1995), and Movie Re-
views (Pang, Lee, and Vaithyanathan, 2002).3 Using all features, Hogwarts
achieved BEP of 0.922 on Reuters, 0.854 on 20 Newsgroups and 0.818 on Movie
Reviews. These results are very similar to the performance obtained by other
researchers (all using SVM). Dumais et al. (1998) achieved BEP of 0.92 for the
10 largest Reuters categories. Bekkerman (2003) obtained BEP of 0.856 on the
20 Newsgroups dataset. Pang, Lee, and Vaithyanathan (2002) obtained accuracy
of 0.829 on the Movie Reviews dataset.

As can be seen in Figure A.2, any level of feature selection harms the per-
formance on all of these datasets. The graphs for χ2 and BNS feature selection

3Since the former two of these datasets are multi-labeled, we use precision-recall break-even
point (BEP) as a measure of classification performance rather than accuracy (see Section A.2.5).
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Figure A.2: Hogwarts performance on existing datasets (feature selection with
IG)
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Figure A.3: Improvement in SVM accuracy at different FS levels vs. using 100%
features

algorithms exhibit behavior very similar to IG, so we do not show them here
owing to lack of space. Note that all the experiments reported in the rest of the
paper use the 100 datasets we acquired as explained in Section A.2.1.
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A.3.2 Predicting the Utility of Feature Selection with
Outlier Count

We now show that the Outlier Count measure defined in Section A.2.2 reliably
predicts the utility of feature selection. Figure A.3 shows the improvement in
SVM accuracy at several feature selection levels versus the baseline accuracy
obtained using 100% of features. As we can see, Outlier Count strongly corre-
lates with the magnitude of improvement that can be obtained through feature
selection. We observe that at lower values of Outlier Count aggressive feature se-
lection is highly beneficial. Conversely, at higher OC values much more moderate
(if any) feature selection should be performed, while aggressive selection causes
degradation in accuracy. The next section examines the correlation of Outlier
Count with the differences in performance between individual classifiers.

The Outlier Count for the datasets we used is nearly uniformly distributed be-
tween 6 and 62, with a single outlier value (no pun intended!) of 112 for Dataset 1
(Figure A.1), for which feature selection caused SVM accuracy to drop from 0.86
to 0.74. For other datasets frequently used for text categorization, Outlier Count
for Reuters-21578 is 78, Movie Reviews—154, and 20 Newsgroups—391, which
explains why feature selection does for them more harm than good.

Based on these findings, we conclude that using Outlier Count for ordering
datasets reflects the degree to which a dataset can be concisely described by only
a few features, while the rest of the features are predominantly redundant and
have detrimental effect on classification results.

A.3.3 Comparison of Classifiers

Figure A.4 compares the performance of SVM, KNN and C4.5 on the 100 datasets
ordered by Outlier Count. When no feature selection is employed, the perfor-
mance of C4.5 mostly dominates that of SVM and KNN, and only declines in the
rightmost part of the graph, which contains datasets where a few features are not
sufficient for learning the concept.

Table A.1 shows classifier accuracy without feature selection and with the
optimal feature selection level for each classifier. We used paired t-test to assess
the significance of differences in classifier accuracy over the 100 datasets (see
Table A.2). Without any feature selection, the differences between classifiers were
found to be very significant at p < 5 · 10−3 or lower. For individual classifiers,
the improvement in accuracy due to feature selection was extremely significant
at p < 10−13.
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Figure A.4: Comparison of performance of SVM, C4.5 and KNN with 100% features

Table A.1: Classifier accuracy at different FS levels

Accuracy with Accuracy with the
Classifier 100% features optimal FS level

SVM 0.769 0.853 (using 0.5% features)
C4.5 0.800 0.843 (using 0.5% features)
KNN 0.741 0.827 (using 2% features)

Table A.2: Statistical significance of differences in classifier accuracy (p values)

Classifier C4.5 KNN SVM C4.5 KNN
(FS level) (100%) (100%) (0.5%) (0.5%) (2%)

SVM (100%) 5 · 10−3 4 · 10−9 4 · 10−15 2 · 10−10 6 · 10−11

C4.5 (100%) 2 · 10−5 6 · 10−14 2 · 10−15 3 · 10−4

KNN (100%) 2 · 10−16 6 · 10−13 6 · 10−14

SVM (0.5%) 9 · 10−3 4 · 10−8

C4.5 (0.5%) 5 · 10−3
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A.3.4 The Effect of Using Different Feature Sets

Figure A.5 compares the performance of classifiers at different feature selection
levels (using Information Gain). As we can see, C4.5 performs better than SVM
except for the most aggressive FS levels, where their accuracy becomes nearly
equal. Interestingly, C4.5 stays high above KNN at most FS levels.

Figure A.6 presents a similar graph for the extended feature set based on
WordNet. Here we use all features of the conventional bag of words, and only
apply feature selection to the constructed features. C4.5 clearly manages the
multitude of redundant features much better than both SVM and KNN. It is
also noteworthy that the accuracy of SVM and KNN increases steadily as feature
selection becomes more aggressive, while the improvement in their performance
with 0.5% features vs. 100% features is strongly significant at p < 10−18.

When using the optimal FS level (0.5% for both regular words and WordNet
concepts), the addition of WordNet features is only responsible for a minor im-
provement in SVM accuracy from 0.853 to 0.854.

A.3.5 The Effect of Using Different FS Algorithms

Figures A.7 and A.8 show the effect of using different feature selection algorithms
(see Section A.2.4) with SVM and C4.5. Consistently with prior studies (Forman,
2003; Rogati and Yang, 2002), we observe that IG, CHI and BNS are the best
performers, while the difference between them is not statistically significant.4 In
contrast with prior studies, we observe that on the family of datasets we described,
the best performance of SVM is obtained when only using a tiny fraction of
features (0.5% for the three best FS techniques).

A.3.6 Testing the Relevancy of Features

In previous sections we showed that text categorization can greatly benefit from
aggressive feature selection. We now address the question whether the features
discarded by selection are at all relevant for classification. Following Joachims
(1998), we sorted all features by their information gain, and then removed pro-
gressively larger fractions (0.1%, 0.5%, 1%, . . . , 10%, 20%, . . . , 100%) of the
most informative features. As can be seen in Figure A.9, the performance of
an SVM classifier trained on the remaining features is noticeably better than
random up to very high levels of such harmful “selection”. These results corrob-
orate earlier findings by Joachims (1998), and support our hypothesis that the

4The graph for KNN looks substantially similar and also confirms the superiority of IG, CHI
and BNS (with negligible differences), so we omit it owing to lack of space.
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Figure A.5: Classification using a bag of words
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Figure A.6: Classification using an extended feature set

features removed through selection are redundant, even though most of them may
be considered relevant.

A.4 Discussion

Studies in text categorization usually represent documents as a bag of words, and
consequently have to manage feature spaces of very high dimensionality. Most
previous works in the field found that these numerous features are relevant for
classification, and that in particular the performance of SVM text categorization

139



 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ur
ac

y

Feature selection level

IG
CHI

BNS
DF
OR

RND

Figure A.7: SVM accuracy vs. FS level

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ur
ac

y

Feature selection level

IG
CHI

BNS
DF
OR

RND

Figure A.8: C4.5 accuracy vs. FS level

peaks when no feature selection is performed.

We described a class of datasets plagued with redundant features, such that
their elimination significantly boosts categorization accuracy of a host of classi-
fiers. Specifically, we showed that when no feature selection is employed on such
datasets, SVMs are significantly outperformed by C4.5. To explain this phe-
nomenon, we analyzed the distribution of features by their information gain, and
observed that this effect occurs when a small number of features are sufficient for
concisely learning the underlying concept. We defined a measure named Outlier
Count that, for a given dataset and fixed representation scheme, estimates the
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amount of feature redundancy through outlier analysis.

In a series of experiments, we demonstrated that Outlier Count reliably pre-
dicts the amount of improvement that can be gained through feature selection.
These findings are backed by empirical evidence both for the conventional bag
of words, and for a representation extended through feature generation based
on WordNet. We further performed a controlled ablation study to verify that
the redundant features are in fact relevant for classification. To this end, we
removed progressively larger fractions of most informative features, and found
the remaining ones to suffice for better than random performance. Finally, we
analyzed several established benchmarks for text categorization with respect to
Outlier Count, and explained why they do not benefit from feature selection.

Following the established practice in text categorization, throughout this pa-
per we used an SVM classifier with a linear kernel. In an ancillary experiment
we sought to determine whether a non-linear SVM kernel may fare better than
a linear one when dealing with numerous redundant features. Without feature
selection, switching from a linear kernel to an RBF one reduced the accuracy
from 0.769 to 0.687. Even at the optimal feature selection level, the accuracy
achieved with an RBF kernel was slightly below that of a linear one (0.849 vs.
0.853), contradicting our anticipation of better performance by a more sophis-
ticated kernel. However, this experiment should be considered preliminary, and
in our future work we plan to conduct a thorough investigation of the ability of
non-linear SVM kernels to withstand high rates of redundant features.

In a recent study, Forman (2003) proposed a novel feature selection algorithm
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named Bi-Normal Separation, which improved the performance of SVM text cat-
egorization on a range of datasets. Peak performance was obtained when using
500–1000 features (approximately 10% of all available features on the average).
More aggressive feature selection led to sharp degradation of the results—using
less than 100 features caused macro-F1 to decrease by 5%–10% depending on the
selection algorithm used.

Our work corroborates the findings that feature selection can help text catego-
rization with SVMs, and describes a class of problems where the improvement due
to feature selection is particularly large. We showed that for this class of problems
the improvement in accuracy can be twice as high as found by Forman (2003)
(namely, 8.4% vs. 4.2%), while optimal performance is achieved when using much
fewer features (between 5 and 40, depending on the dataset). We also evaluated
several feature selection algorithms on text categorization problems characterized
with many redundant features. Our results support earlier findings that Informa-
tion Gain, Bi-Normal Separation and χ2 are the most powerful feature selection
algorithms, while the differences between them are not significant.

It should be noted that for all the datasets we used, the utility of feature
selection could be established by setting aside part of the training data to serve
as a validation set. Indeed, the high redundancy level was so pronounced, that
the optimal selection level for the testing data could almost always be correctly
determined on the validation fold. However, we believe that the introduction of
Outlier Count and the use of ablation experiments that systematically eliminate
most informative features, allow deeper understanding of the issues of feature
redundancy and relevancy.
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Appendix B

Parameterized Generation of
Labeled Datasets for Text
Categorization Based on a
Hierarchical Directory

Although text categorization is a burgeoning area of IR research, readily available
test collections in this field are surprisingly scarce. We describe a methodology
and system (named Accio) for automatically acquiring labeled datasets for text
categorization from the World Wide Web, by capitalizing on the body of knowl-
edge encoded in the structure of existing hierarchical directories such as the Open
Directory. We define parameters of categories that make it possible to acquire
numerous datasets with desired properties, which in turn allow better control over
categorization experiments. In particular, we develop metrics that estimate the
difficulty of a dataset by examining the host directory structure. These metrics
are shown to be good predictors of categorization accuracy that can be achieved
on a dataset, and serve as efficient heuristics for generating datasets subject to
user’s requirements. A large collection of automatically generated datasets are
made available for other researchers to use.

B.1 Introduction

While numerous works studied text categorization (TC) in the past, good test
collections are by far less abundant. This scarcity is mainly due to the huge
manual effort required to collect a sufficiently large body of text, categorize it,
and ultimately produce it in machine-readable format. Most studies use the
Reuters-21578 collection (Reuters, 1997) as the primary benchmark. Others use
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20 Newsgroups (Lang, 1995) and OHSUMED (Hersh et al., 1994), while TREC
filtering experiments often use the data from the TIPSTER corpus (Harman,
1992).

Even though the Reuters-21578 dataset became a standard reference in the
field, it has a number of significant shortcomings. According to Dumais and Chen
(2000), “the Reuters collection is small and very well organized compared with
many realistic applications”. Scott (1998) also noted that the Reuters corpus has
a very restricted vocabulary, since Reuters in-house style prescribes using uni-
form unambiguous terminology to facilitate quick comprehension. As observed
by Joachims (1998), large Reuters categories can be reliably classified by virtually
any reasonable classifier. We believe that TC performance on more representative
real-life corpora still has way to go. The recently introduced new Reuters corpus
(Lewis et al., 2004), which features a large number of documents and three or-
thogonal category sets, definitely constitutes a substantial challenge. At the same
time, acquisition of additional corpora for TC research remains a major issue.

In the past, developing a new dataset for text categorization required extensive
manual effort to actually label the documents. However, given today proliferation
of the Web, it seems reasonable to acquire large-scale real-life datasets from the
Internet, subject to a set of constraints. Web directories that catalog Internet sites
represent readily available results of enormous labeling projects. We therefore
propose to capitalize on this body of information in order to derive new datasets
in a fully automatic manner. This way, the directory serves as a source of URLs,
while its hierarchical organization is used to label the documents collected from
these URLs with corresponding directory categories. Since many Web directories
continue to grow through ongoing development, we can expect the raw material
for dataset generation to become even more abundant as the time passes.

In what follows, we propose a methodology for automatic acquisition of up-
to-date datasets with desired properties. The automatic aspect of acquisition
facilitates creation of numerous test collections, effectively eliminating a consid-
erable amount of human labor normally associated with preparing a dataset. At
the same time, datasets that possess predefined characteristics allow researchers
to exercise better control over TC experiments and to collect data geared towards
their specific experimentation needs. Choosing these properties in different ways
allows one to create focused datasets for improving TC performance in certain
areas or under certain constraints, as well as to collect comprehensive datasets
for exhaustive evaluation of TC systems.

After the data has been collected, the hierarchical structure of the directory
may be used by classification algorithms as background world knowledge—the
association between the data and the corresponding portion of the hierarchy is
defined by virtue of dataset construction. The resulting datasets can be used for
regular text categorization, hypertext categorization, as well as hierarchical text
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classification. Moreover, many Web directories cross-link related categories with
so-called “symbolic links”, which allow one to construct datasets for multi-labeled
TC experiments.

We developed a software system named Accio 1 that lets the user specify
desired dataset parameters, and then efficiently locates suitable categories and
collects documents associated with them. It should be observed that Web docu-
ments are far less fluent and clean compared to articles published in the “brick
and mortar” world. To ensure the coherence of the data, Accio represents each
Web site with several pages gathered from it through crawling, and filters the
pages gathered both during and after the crawling. The final processing step
computes a number of performance metrics for the generated dataset.

In this paper we describe generation of datasets based on the Open Direc-
tory Project (ODP, http://dmoz.org), although the techniques we propose are
readily applicable to other Web directories, as well as to non-Web hierarchies of
documents (see Section B.2). A number of previous studies in hypertext and hi-
erarchical text classification used document sets collected from Yahoo! (Mladenic
and Grobelnik, 1998b; Labrou and Finin, 1999), ODP (Chakrabarti et al., 2002;
Cohen et al., 2002; Meng et al., 2002) and the Hoover’s Online company database
(Ghani et al., 2000; Yang, Slattery, and Ghani, 2002). To the best of our knowl-
edge, all these studies performed standard acquisition of Web documents pointed
at from the explicitly specified directory nodes; specifically, no properties of cat-
egories were considered or defined, and no attempt to predict the classification
performance was made. Interestingly, a recent study in word sense disambigua-
tion (Santamaria, Gonzalo, and Verdejo, 2003) used ODP to automatically ac-
quire labeled datasets for disambiguation tasks. In this work, a collection of ODP
categories were first automatically mapped to WordNet (Fellbaum, 1998) senses,
and then the descriptions of links classified under these categories were collected
to serve as sentences with sense-labeled words. In contrast to our approach, this
mapping only considered category paths, while we also analyze the full text of
category and link descriptions (see Section B.2).

The main contributions of this paper are threefold. First, we present a
methodology for automatically acquiring labeled data sets for text categoriza-
tion experiments, which allows parameterized generation of datasets with desired
properties. Second, we establish a connection between similarity metrics for doc-
ument sets and the classification accuracy achieved on these sets. The similarity
metrics we developed are shown to be good predictors of classification accuracy,
and can therefore be used as efficient heuristics for locating datasets of desired
degree of hardness. We also propose to use classification accuracy as a new simi-
larity metric that reflects how separable two document sets are. Finally, we make

1Accio (Latin - to call to, summon)—incantation for the Summoning Charm, which causes
an object called for to fly to the caster (Rowling, 2001).
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publicly available a large collection of text categorization datasets that we col-
lected and evaluated in the course of this work, along with a variety of metrics
computed for them. Using the same datasets allows different research groups
to conduct repeatable experiments and to compare their results directly. This
repository, which is similar in purpose to the UCI Repository of machine learning
databases (Blake and Merz, 1998), is available for research use and is publicly
accessible at http://techtc.cs.technion.ac.il. All datasets are available in
plain text form and in the form of preprocessed feature vectors; the latter distri-
bution can be used by researchers in machine learning who are less interested in
the specifics of text processing. Furthermore, for each dataset we provide baseline
performance numbers using SVM, KNN, and C4.5. We also plan to release the
software system for automatic generation of datasets. Other researchers will be
able to use Accio to acquire new datasets subject to their specific requirements.

B.2 Parameterization of Dataset Generation

Throughout this paper we discuss generation of datasets that contain two cat-
egories and are single-labeled, that is, every document belongs to exactly one
category. In Section B.5 we consider possible relaxations to this rule.

We assume the availability of a hierarchical directory of documents that sat-
isfies the following requirements:

1. The directory is organized as a tree where each node is labeled with a
category.

2. There is a collection of documents associated with each category (directory
node).

3. Categories are provided with text descriptions. Documents associated with
the categories may optionally be accompanied by short annotations.

Suitable directories come in a variety of forms. Some are major Web directo-
ries that catalog actual Web sites, such as Yahoo! or the Open Directory. The
Medical Subject Headings (MeSH) hierarchy (MeSH, 2003) maintained by the
U.S. National Library of Medicine is cross-linked with the MEDLINE database,
and therefore can be used for automatic generation of labeled datasets of medi-
cal texts. Library classification schemes such as UDC and Dewey are hierarchical
catalogs of books that can also be used for automatical acquisition of text catego-
rization datasets; samples of books can be used if shorter documents are required.
The open content Wikipedia encyclopedia2 collaboratively developed by Internet

2http://www.wikipedia.org .
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users offers tantalizing opportunities for harnessing high quality datasets. As of
this writing, Wikipedia contains over 170,000 articles in English and 150,000 in
other languages, thus allowing acquisition of datasets on similar topics in a vari-
ety of languages. Yet another option is to use the new Reuters collection (Lewis
et al., 2004) that contains over 800,000 documents labeled with categories com-
ing from three distinct hierarchies. In this project we generate datasets based on
the Open Directory Project, which is arguably the largest publicly available Web
directory.3

We employ two kinds of parameters that define the nature of generated
datasets: those characterizing the dataset as a whole (i.e., describe pairs of cate-
gories), and those characterizing individual categories that comprise the datasets.
Varying these parameters allows one to create classification tasks with different
properties.

B.2.1 Metrics

Metrics quantify conceptual distance between a pair of categories. Intuitively,
the larger the distance, the easier it is to induce a classifier for separating the
categories. From the machine learning perspective, the difficulty of a dataset
for existing categorization algorithms is an important parameter. The ability to
create datasets with varying degree of difficulty would be instrumental in the quest
for better learning algorithms. In other words, we would like to retain control
over the degree of separability of the two categories comprising the dataset. In
this section we first define an exact but computationally expensive measure of
dataset hardness, and then propose two metrics that are highly correlated with
it but are much more efficient to compute.

Achievable Categorization Accuracy as a Measure of Dataset Hardness

A straightforward way to assess how difficult a given dataset is for currently avail-
able learning algorithms is simply to run these algorithms on it. It is apparently
appealing to use the accuracy of a single best classification algorithm as an ulti-
mate measure, especially in the light of the fact that a number of studies showed
support vector machines to be the best performing text classifier (Joachims, 1998;
Dumais et al., 1998). However, as we show in Section B.4.4, SVM does not nec-
essarily produce the best results for every dataset. Several researchers observed

3Although the actual size of Yahoo! has not been publicly released in the re-
cent years, it is estimated to be about half the size of the Open Directory (see
http://sewatch.com/reports/directories.html and http://www.geniac.net/odp for
more details).
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similar phenomena, and used various learning approaches to decide which clas-
sifier should be used for a given category (Lam and Lai, 2001) or for a given
document (Bennett, Dumais, and Horvitz, 2002).

We believe that such sophisticated classifier combination schemes might be
an overkill for establishing a measure of category separability. We suggest using
some function of the accuracy values achieved by a number of classifiers as the
“gold standard” of hardness. While there are many ways to define a suitable
combination scheme, we propose to use the maximum accuracy among a set
of classifiers, as we believe it reflects how difficult the dataset is for the best
available algorithm (obviously, without an oracle predicting which classifier to
use, this value cannot always be attained in practice). Formally, we define

distclass max(c1, c2) = max
alg∈C

Accuracyalg(c1, c2) ,

where c1, c2 are a pair of categories comprising a dataset and C is a set of classifi-
cation algorithms. In the sequel we refer to this metric as Maximum Achievable
Accuracy (MAA). In the experiments reported in Section B.4 we compute MAA
using classifiers based on support vector machines, decision trees and the K-
Nearest Neighbor algorithm.

Nothing seems simpler than defining the hardness of a dataset by actual clas-
sification accuracy. The only problem with this approach is that it is grossly
inefficient. When we search for datasets in a certain difficulty range, using MAA
as part of “generate-and-test” strategy is too computationally intensive to be
practical. Computing MAA requires to actually crawl the Web to download the
documents, clean the data and organize it as a dataset, and finally subject it to
a number of classifiers. If MAA turns out to be too low or too high compared
with the requirements, we have to test another pair of categories, then another
one, and so on.

We developed two metrics that estimate the difficulty of a dataset by only
examining the hierarchical structure of the host directory, without analyzing the
text of actual documents. In Section B.4 we show that these metrics are strongly
correlated with MAA and the accuracies of individual classifiers, and this can
serve good predictors of how difficult it is to build a classifier that tells two
categories apart.

Historically, the idea of partitioning categories by similarity of meaning (as
well as by importance or frequency) was first mentioned by Lewis (1991), when
he suggested to group categorization results over different kinds of categories.

In order to develop metrics for computing similarity of categories drawn from
a hierarchical directory, let us review a similar setting of assessing similarity of
words using a hierarchical dictionary or taxonomy. The metrics we define assign
lower values to more similar categories, therefore, in what follows we use the term
distance metric (rather than similarity metric) to emphasize this fact.
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Edge-counting Graph Metric

The edge-counting metric (called graph metric below) measures the distance be-
tween a pair of categories by the length of the shortest4 path connecting them in
the hierarchy. We conjecture that the closer two categories are in the underlying
graph, the closer they are in meaning, and hence the smaller the distance between
them is. Formally, we define

distgraph(c1, c2) = #edges in the tree path from c1 to c2 .

Rada and Bicknell (1989) also used hierarchy path length as a measure of
conceptual distance. However, this study focused on estimating the similarity of
individual terms rather than entire sets of documents.

WordNet-based Textual Metric

The above metric only uses the graph structure underlying the hierarchy as a
sole source of information. We now propose a more elaborate metric (called text
metric in the sequel) that compares textual descriptions of the categories that
are assumed to be provided with the hierarchy.

Our text metric builds upon the similarity metric for individual words sug-
gested by Resnik (1999), which uses the WordNet electronic dictionary (Fellbaum,
1998) as a source of additional background knowledge. Given two words w1 and
w2 whose similarity needs to be established, let us denote by S1 the set of all
WordNet nodes (called synsets) that contain w1 and by S2—the set of all synsets
that contain w2. Resnik defined the similarity between two words as

simResnik(w1, w2) = maxsj
[− log p(sj)] , (B.1)

where {sj} is a set of synsets that subsume at least one synset from S1

and one synset from S2 (i.e., the set of all concepts that subsume both
given words), p(sj) is the probability of synset sj computed as a func-
tion of the frequencies of words that belong to it measured on a ref-
erence corpus, and − log p(sj) is the information content of this synset.
No word sense disambiguation is performed, and all senses of a polysemous word
are considered equally probable.

We generalize this metric to make it applicable to entire category descrip-
tions rather than individual words. In the preprocessing phase we represent each
category by pooling together (i) the title and description of the category itself
and all of its descendants (sub-categories), and (ii) the titles and descriptions

4Using the shortest path is important when the hierarchy is actually a graph rather than a
tree (for example, when symbolic links of the Open Directory are considered).
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(annotations) of the links to actual documents classified under this category or
one of its sub-categories. We denote the union of all these textual descriptions
for category ci as Di. Each pooled description Di is represented as an unordered
bag of words.

The (asymmetric) distance between a pair of such descriptions is canonically
defined as an average distance from the words of the first description to those of
the second one:

dist(D1, D2) =
1

|D1|
∑

w∈D1

dist(w,D2) ,

where the distance between a word and a bag of words is defined as the shortest
distance between this word and the bag (i.e., the distance to the nearest word in
the bag):

dist(w, D) = minw′∈Ddist(w,w′) . (B.2)

The distance between two words is defined using Resnik’s similarity met-
ric, except the score it returns is subtracted from the maximum possible score
(simMAX) to transform the similarity metric into a measure of distance:

dist(w, w′) = simMAX − simResnik(w,w′) .

To estimate the word frequencies needed for the computation of p(sj) in (B.1),
we used a training corpus composed of the descriptions of all ODP categories;
this step effectively tunes the metric to a specific text collection at hand.

Finally, the metric that operates on entire textual descriptions of categories
is symmetrically defined as

disttext(c1, c2) = dist(D1, D2) + dist(D2, D1) .

Computing disttext requires some preprocessing computation to build category
descriptions Di, and then use the frequency of words found in these descriptions
to train a language model that underlies the computation of − log p(sj). Observe
that even without the preprocessing phase performed offline, computing the text
metric is a computationally intensive process, as it considers every pair of words in
the two category descriptions, and for each such pair maximizes the information
content of the subsuming synsets.

Budanitsky and Hirst (2001) provide a good survey of other word similarity
metrics based on WordNet.

B.2.2 Properties of Individual Categories

The following parameters can be configured for individual categories:
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1. The cardinality of a category specifies the desired number of documents it
should contain. In general, the more examples (documents) are available,
the easier the learning task is due to a better representation of the category.

2. Recall that the documents we collect actually represent Web sites they
were downloaded from. Exploring Web sites to different depths affects the
quality of this representation. However, taking too many documents from
each site is not necessarily good, as moving further away from the site’s
root page may lead to barely related pages. The parameter that controls
this fine balance is called coherence, and is expressed as a number of pages
downloaded from each Web site and concatenated into a single document.

3. Limiting the selection of categories to a certain part of the hierarchy effec-
tively allows to restrict the contents of the documents to a particular topic.
For example, generating datasets from the Open Directory Top/Health

subtree may be useful for testing operational TC systems for the medical
domain. The language of documents may be restricted in a similar way.

B.3 Methodology for Automatic Dataset Gen-

eration

In this section we outline the methodology for automatic generation of datasets.

B.3.1 Acquisition of the Raw Data

Generating a new dataset starts with locating a pair of categories subject to user’s
specification, which consists of a set of desired parameters (or characteristics) of
the dataset to build (see Section B.2). Finding a pair of categories at specified
graph distance is easy, as it involves pursuing a corresponding number of edges
in the graph underlying the hierarchy. On the other hand, identifying pairs of
categories at a specified text distance is far from trivial. Although the experiments
presented in Section B.4.3 do show high correlation between the two metrics, in
general counting the number of edges can only give a rough estimation of the text
distance between two categories.

Since the text metric is much more computationally intensive than the graph
one, we cache its values for all pairs of categories considered so far. Given the
desired text distance, we first consult the cache to see if a suitable pair of cate-
gories was already found. If this simple test fails, we randomly sample the cache
and identify a pair in the sample whose distance is closest to the required one.
We then perform a hill-climbing search in the hierarchy graph starting from that
pair. This search is limited in the number of steps, and if no appropriate pair

151



Algorithm LocateCategoryPair TextDist(d)
if (∃(p, q) ∈ Cache s.t. disttext(p, q) = d)

then return (p, q)
found ← false
while (¬found)

Draw a random sample S ⊂ Cache
Let (p, q) ∈ S s.t. ∀(p′, q′) ∈ S :
|d− disttext(p, q)| ≤ |d− disttext(p

′, q′)|
Starting from (p, q), perform n-step hill climbing

until a pair (pd, qd) is found s.t. disttext(p, q) = d

Figure B.1: Locating categories at requested text distance

is found after the limit is exhausted, we randomly sample the cache again, and
repeat the entire process until a suitable pair of categories is found. Figure B.1
outlines the pseudocode of the search algorithm.

It is essential to emphasize that the above algorithm only analyzes the hierar-
chy structure and category descriptions, but never examines the contents of actual
documents. It is this feature of our methodology that makes finding datasets of
configurable difficulty much more computationally tractable than if MAA was to
be used (Section B.2.1). In our future work we plan to develop more sophisti-
cated algorithms for efficiently locating pairs of categories at specified conceptual
distance (see Section B.5).

After locating an appropriate pair of categories, we collect the documents as-
sociated with them. Importantly, if a certain category c has several sub-categories
under it in the given hierarchy (c1 . . . cn), we collect the documents from the union
of all these categories. The hierarchy structure allows us to view c1 . . . cn as par-
ticular cases of c, and thus we can find many more relevant documents than if
looking into category c alone.

When generating datasets from Web directories such as the ODP, where each
category contains links to actual Internet sites, we need to construct text docu-
ments representative of those sites. Following the scheme introduced in (Yang,
Slattery, and Ghani, 2002), each link cataloged in the ODP is used to obtain a
small representative sample of the target Web site. To this end, we crawl the
target site in the BFS order, starting from the URL listed in the directory. A
predefined number of Web pages are downloaded, and then concatenated into a
synthetic document. We refer to these individual pages as sub-documents, since
their concatenation yields one document for the categorization task. We usu-
ally refer to synthetic documents created by pooling sub-documents simply as
documents to be consistent with TC terminology; alternatively, we call them
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meta-documents to avoid ambiguity when necessary.
Finally, HTML documents are converted into plain text and organized as a

dataset, which we render in a simple XML-like format. It should be noted that
converting HTML to text is not always perfect, since some small auxiliary text
snippets (as found in menus and the like) may survive this procedure; we view
such remnants as a (low) residual noise inherent in automated data acquisition.

B.3.2 Filtering the Raw Data to Cope with Noise

Data collected from the Web can be quite noisy. Common examples of this noise
are textual advertisements, numerous unrelated images, and text rendered in
background color aimed at duping search engines. To reduce the amount of noise
in generated datasets we employ filtering mechanisms before, during, and after
downloading the data.

Pre-processing filtering eliminates certain categories from consideration. For
example, we unconditionally disregard the entire Top/World subtree of the Open
Directory that catalogs Web sites in languages other than English. Similarly, the
Top/Adult subtree may be pruned to eliminate inappropriate adult content.

Recall that for every directory link we download a number of pages whose
concatenation represents the corresponding Web site. Online filtering performed
during the download restricts the crawler to the site linked from the directory,
and does not allow it to pursue external links to other sites.

Post-processing filtering analyzes all the downloaded documents as a group,
and selects the ones to be concatenated into the final meta-document. In practice,
we download more sub-documents than requested by the user, and then decimate
them. We developed two post-processing filters:

1. Weak filtering discards Web pages that contain HTTP error messages, or
only have a few words.

2. Strong filtering attempts to eliminate unrelated pages that do not ad-
equately represent the site they were collected from (e.g., legal no-
tices or discussion forum rules). To eliminate such pages, we try to
identify obvious outliers. We use the root page of a Web site (i.e.,
the page linked from the directory) as a “model” deemed to be rep-
resentative of the site as a whole. Whenever the root page con-
tains enough text for comparison, we use the text metric developed in
Section B.2.1 to compute the distance between it and every other page
downloaded from the site. We then discard all pages located “further”
from the root than one standard deviation above the average.

Comparing weak and strong filtering, we found the latter to improve TC
accuracy by about 0.5%–1.5%.
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B.4 Empirical Evaluation

In this section we show that the datasets generated using the proposed method-
ology are sufficiently versatile and allow adequate degree of control over TC ex-
periments.

B.4.1 Data Acquisition

We used the methodology outlined in Section B.3 to automatically generate a
collection of datasets based on the Open Directory Project (http://dmoz.org).
The Open Directory is a public directory that catalogs selected Internet sites.
At the time of this writing, ODP covers over 4 million sites organized in more
than 540,000 categories. The project constitutes an ongoing effort promoted by
non-professional users around the globe; currently, ODP advertises a staff of over
60,500 editors. Being the result of pro bono work, the Open Directory has its
share of drawbacks, such as non-uniform coverage, duplicate subtrees in different
branches of the hierarchy, and sometimes biased coverage due to peculiar views
of the editors in charge. At the same time, however, ODP embeds a considerable
amount of human knowledge.

Based on the Open Directory, we generated 300 datasets of varying difficulty,
by using the metrics defined in Section B.2.1 to find categories located at different
graph or text distances. Each dataset consists of a pair of categories with 100–
200 documents per category, while each document was created by concatenating
5 sub-documents.

B.4.2 Text Categorization Infrastructure

The following learning algorithms were used to induce actual text classifiers: sup-
port vector machines (Vapnik, 1995) (using SV M light implementation (Joachims,
1999a)), decision trees (C4.5 (Quinlan, 1993)), and K-Nearest Neighbor (Duda
and Hart, 1973). The motivation behind this choice of algorithms is that they
belong to very different families, and thus allow comprehensive evaluation of the
datasets generated.

We used classification accuracy as a measure of text categorization perfor-
mance. Studies in text categorization usually work with multi-labeled datasets
in which each category has much fewer positive examples than negative ones. In
order to adequately reflect categorization performance in such cases, other mea-
sures of performance are conventionally used, including precision, recall, F1, and
precision-recall break-even point (Sebastiani, 2002). However, for single-labeled
datasets all these measures can be proved to be equal to accuracy, which is the
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measure of choice in the machine learning community. All accuracy values re-
ported in this paper were obtained under the 10-fold cross-validation scheme.

We conducted the experiments using a text categorization platform of our
own design and development called Hogwarts5. We opted to build a compre-
hensive new infrastructure for text categorization, as surprisingly few software
tools are publicly available for researchers, while those available only allow lim-
ited control over their operation. Hogwarts performs text preprocessing, fea-
ture extraction, construction, selection and valuation, followed by cross-validated
classification. Hogwarts interfaces with SVM, KNN and C4.5, and computes
all standard measures of categorization performance. At a later stage we plan to
make Hogwarts publicly available for research use.

B.4.3 Correlation Between Distance Metrics and Text
Categorization Accuracy

Recall that our primary aim is to generate datasets with predefined properties.
Specifically, one of the most important properties we introduced in Section B.2
is the ability to exercise control over the difficulty of separation of two categories
comprising a dataset. The experiments reported below were designed to verify
whether the metrics we developed in Section B.2.1 can serve as reliable predictors
of category separability. We first juxtapose metric predictions with the accuracy
of an SVM classifier, and then compare them with the Maximum Achievable
Accuracy (MAA).

Figure B.2 shows the correlation between the graph metric and SVM cate-
gorization accuracy, while Figure B.3 shows a similar plot for the text metric.
Both figures demonstrate that the metrics have strong prediction power for SVM
accuracy. The value of Pearson’s linear correlation coefficient (Press et al., 1997)
that we computed to quantify this dependence is 0.533 for the graph metric and
0.834 for the text one. Interestingly, the two metrics are fairly strongly correlated
between themselves, as implied by their correlation of 0.614 (see Figure B.4).

As follows from the experimental results, there is a trade-off between the
computational efficiency and the prediction power of the two metrics. The graph
metric is much faster to compute, but only offers a rough estimation of the degree
of separability of a pair of categories. The text metric is much less efficient to
compute, but offers by far more reliable distance assessment.

5Hogwarts school of witchcraft and wizardry is the educational institution attended by Harry
Potter (Rowling, 2001).

155



 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10  12  14  16  18  20

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

S
V

M
)

Graph distance

Figure B.2: SVM accuracy vs. graph distance
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Figure B.3: SVM accuracy vs. text distance

B.4.4 Correlation Between Distance Metrics and MAA

In Section B.2.1 we defined the difficulty of a dataset as a function of performance
of a number of classifiers. Instead of using the accuracy produced by any single
classifier, we proposed to use the maximum value among several classifiers that
were shown to be good performers in previous studies.

Let us first provide empirical support for the choice of MAA as a rea-
sonable measure of conceptual distance between a pair of categories. The
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Figure B.4: Text distance vs. graph distance

average accuracy achieved by SVM on the datasets tested is 0.896, KNN—
0.874, and C4.5—0.878. These results are consistent with previously pub-
lished studies (Sebastiani, 2002), and show that the generated datasets ex-
hibit similar performance properties to the manually collected ones used in
prior research. However, a closer look at classifier performance on individual
datasets reveals that SVM—although a superior technique in the majority of
cases—does not always yield the best accuracy compared to other classifiers.
Specifically, SVM was outperformed by KNN on 58 datasets (19%) and by C4.5
on 80 datasets (27%). Furthermore, C4.5 outperformed KNN on 119 datasets
(40%), even though decision trees are usually deemed an inferior approach to
text categorization compared to SVM and KNN. Therefore, the performance of
the best currently available algorithm for a particular dataset constitutes a more
reliable measure of its true difficulty.

The experiments we conducted prove that the correlation of the graph and
text metrics to MAA is consistently high. Specifically, the correlation between
distgraph and MAA is 0.550, and between disttext and MAA—0.790. Figures B.5
and B.6 depict these correlations with standard error bars. Based on these
findings, we conclude that the metrics we developed are good predictors of dataset
difficulty.

B.4.5 Versatility of Dataset Generation

We now show that the proposed methodology can be used to automatically gen-
erate a continuum of non-trivial categorization tasks of varying difficulty. Having
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Figure B.5: MAA vs. graph distance
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Figure B.6: MAA vs. text distance

established in the previous section that the distance metrics are good predic-
tors of categorization accuracy, we demonstrate that it is possible to find enough
category pairs of adequate size at different conceptual distances.

To prove this, we examine two graphs with pertinent ODP statistics. Fig-
ure B.7 depicts the number of category pairs that reside at various distances as
measured by the graph metric. Since the text metric is much more computa-
tionally expensive, showing in full the similar distribution of text distances is
not feasible. For machine learning tasks, we are usually interested in categories
with a sufficient number of examples to make (statistical) learning meaningful
and allow adequate generalization. Figure B.8 shows a sampled distribution of
text distances among mid-size category pairs having 100–3000 links. ODP has
approximately 13,000 categories in this size range (and therefore 13,0002/2 pairs);
Figure B.8 was built by randomly sampling 3,500 pairs of such categories.

These graphs suggest that the Open Directory is large and versatile enough
to produce numerous datasets with desired properties.
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Figure B.7: Distribution of graph distances in ODP
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Figure B.8: Distribution of text distances in ODP (sample)

B.5 Conclusions and Future Work

Text categorization is an active area of research in information retrieval, yet
good test collections are scarce. We presented a methodology and system named
Accio for automatically acquiring labeled datasets for text categorization from
hierarchical directories of documents. We applied this methodology to gener-
ate 300 datasets from the largest Web directory to date—the Open Directory
Project—as an example. The datasets thus generated can be used in a variety
of learning tasks, including regular text categorization, hypertext categorization,
and hierarchical text classification.
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To allow acquisition of new datasets with predefined characteristics, we de-
fined a set of properties that characterize datasets as a whole, as well as individual
categories that comprise them. We first introduced Maximum Achievable Accu-
racy (MAA) as an intrinsic measure of dataset difficulty, and then developed two
kinds of distance metrics that predict the categorization difficulty of a dataset
without actually examining the full text of the documents. These metrics analyze
the location of categories in the hierarchy tree, as well as textual descriptions of
categories and annotations of documents. We empirically showed that the text-
based metric possesses high predictive power for estimating the separability of
a pair of categories. The edge-counting graph metric is somewhat less reliable,
but is much more efficient computationally. We also observed that MAA can be
used as a measure of similarity between sets of documents, quantifying the ease
of separating them with a text classifier. Since texts acquired from the WWW
are often plagued with noise and are generally quite different in nature from for-
mal written English found in printed publications, we reported specific steps we
undertook to filter the data and monitor its quality during acquisition.

Finally, we established a new repository of text categorization datasets, which
currently contains several hundred datasets at various levels of difficulty that
we generated using the proposed methodology. This collection is available at
http://techtc.cs.technion.ac.il, along with ancillary statistics and mea-
sured classifier performance. The collection continues to grow, and its growth
rate is only limited by bandwidth and storage resources. Having a wide variety
of datasets in a centralized repository will allow researchers to perform a wide
range of repeatable experiments. The Accio system that performs parameter-
ized dataset acquisition from the ODP will be released at a later stage. Using
a subset of these datasets, we developed a novel criterion that assesses feature
redundancy and predicts the utility of feature selection for TC (Gabrilovich and
Markovitch, 2004).

This research can be extended in several directions. We plan to investigate
more sophisticated distance metrics that overcome the drawbacks of the basic
metrics we described herein. The graph metric does not account for the fact
that two nodes whose common ancestor is close to the hierarchy root are much
less related, than two nodes at the same edge distance whose common ancestor
resides deep in the tree. The graph metric may also produce unreliable values
for extremely long hierarchy paths, which contain too many intermediate gener-
alizations. The WordNet-based text metric is obviously undefined for words not
found in WordNet (e.g., neologisms, narrow technical terms, and proper names);
currently, if such a word is present in both documents, we take the value in equa-
tion (B.2) to be zero, otherwise, we ignore this word. The text metric may also be
inaccurate for documents with only a few words. Following standard IR practice,
we also tested the conventional cosine metric to compare bag-of-word vectors of

160



categories and documents, but empirically found it to be inadequate. Most of
the values of the cosine measure clustered near its extremes (0 and 1), while the
mid-range was very sparsely populated; we attribute this phenomenon to the lack
of any background knowledge about word semantics (as, for example, provided
by WordNet in the text metric).

We intend to investigate additional parameters of categories that will allow
to exercise better control over the properties of generated datasets. Of particular
interest and practical importance are filtering techniques for cleaning the data
downloaded from the Web, and we plan to study this issue in greater depth using
focused crawling techniques. We also plan to develop more elaborate algorithms
that locate pairs of categories subject to user’s requirements.

We further intend to construct larger datasets consisting of more than two
categories; to do so, category similarity metrics will need to be generalized ap-
propriately to consider mutual distances in a group of categories. We also intend
to generate datasets from additional document directories that contain high qual-
ity noise-free articles.
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xivwz

mpyi ef dniynl .zeixebhwa mihqwh ly ihnehe` beiza wqer mihqwh beeiq

migeeic xezi` ,`yep itl miknqn itqe` oebx` ,laf x`ec iedif oebk ,miax miyeniy

z` zbviin mihqwh beeiql zlaewnd dyibd .cere ,oiricend megza miihpeelx

zexiaq ze`vez ozep df bevii lr qqaznd beeiq .xecq izla milin sqe`k hqwhd

mr cgi .beeqnd oeni`l ze`nbec daxd yiy i`pzae mikex` mihqwha xaecn xy`k

zveawa e` mixvw mihqwha xaecn xy`k zxkip dxeva micxei dyibd irevia ,z`f

.dphw oeni`

ynzydl dleki `id oky ,dceqin zlaben dpid milin sqe` lr zqqeand dyib

-ynzyn mipeyd miknqndy i`pzae ,yxetn ote`a miknqna xkfed xy` rcina wx

lrn zellkd zeyrl zlbeqn dpi` dyibd ,hxta .ziawr dxeva oewiqwl eze`a mi

.oeni`d iknqna zeriten opi` xy` dwicad iknqnay milinn mlrzz okle ,milin

-xicza oeni`d zveawa zeriten opi` xy` zetcxp milina mb lthl dywzn dyibd

,milin ly zernyn-ax zxzd rval zlbeqn dpi` ef dyib ,ok enk .witqn ddeab ze

.odly ixewnd xywda zecaern opi` zeirnyn-ax milin oky

oebk ,zepey zewipkh zervn`a hqwhd bevii z` xtyl miax zepeiqip eyrp xara

.ixiagz gzpna yeniy oke ,xaic iwlga milin beiz ,(n-grams) milin zexcqa yeniy

dirad icnin mevnvl zeyiba oke (clustering) milin ixava eynzyd zexg` zehiy

jxca lw miyp`l ,z`f mr cgi .zlaben dglvd aexl dzid el` zepeiqipl .LSA enk

i



.miyp`l yiy axd rcid xve` lya z`fe ,hqwhd `yep z` zedfl llk

myl mlerd rci ixb`n lr zqqazn xy` dycg dyib mirivn ep` ef dceara

ynzyi xy` zeipekz dpeaa ynzyp ,hqwhd beeiq iptl .hqwhd bevii zxyrd

xyek zelra zeycg zeipekza heytd milind sqe` z` xiyrdl zpn lr ipevig rcia

,zihnehe` dxeva zrvazn zeipekzd ziipa .mbeeql yiy mi`yepd oia aeh dcxtd

,zepexg`d mipya hpxhpi`d zyx zehytzd zece` .iyep` rci ixb`na yeniy jez

ly hpxhpi`d jixcn ,geztd jixcnd oebk ,lkl miyibpd miax rci ixb`n meid mpyi

.dictiwie oke ,Yahoo

z` bxcyl dzxhny ,zecnel zekxrn megza dreci dhiy dpid zeipekz ziipa

.xteyn dcxtd xyek zelra ,zeycg zeipekz zxfra ze`nbecd ly ixewnd beviid

minrt dk cr dhiyd dzqep mihqwh ceair megza j` ,miax miyeniy ef dhiyl

.ziwlg dglvdae ,zehren

yiy rcid ixb`nl dyib zecnel zekxrnl zepwdl dpid zigkepd dceard zxhn

miynnne ,ipevig rcia yeniyl zillk dibelecezn mixicbn ep` ef dceara .mc` ipal

ynzydl zpn lr .dictiwiee geztd jixcnd - minieqn rci ixb`n ipy xear dze`

mibyenl hqwh irhw zetnl lbeqn xy` ,xfr beeqn mipea ep` ,dl`d rcid zexve`a

dl` mibyena miynzyn ep` ,okn xg`l .dictiwieae geztd jixcna miihpeelxd

agxend zeipekzd agxna mihqwh bevii .milind sqe` z` zexiyrny zeipekz xeza

.beeiqd weic xetiyl zeax mxez

ixt mdipy .mbeqn xzeia milecbd rcid ixb`n mpid dictiwiee geztd jixcnd

ziyteg dcxedl mipzip mixb`nd ipy .lazd iagxa miacpzn itl` ze`n ly dcear

dxiyre dwenr dikxxida obxe`n rcid geztd jixcna .aygna ceairl dlwy dxeva

inegze zepne` ,d`etx oebk miitivtq minegza rci ode illk rci od dlikn xy` ,c`n

`ide ,mlera xzeia dlecbd zaygennd dictelwivp`d dpid dictiwie .mipeyd rcnd

ynzydl zexyt`d lr zeax xaec xara .mixn`n ly lecb sqe` xeza zpbxe`n
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dtyd zpad ly ax iyewa lwzp df oeirx j` ,miaygnl rci ziipwdl dictelwivp`a

ynzydl aygnl zxyt`ny dyib dpey`xl mirivn ep` ef dceara .aygn ici lr

rci ly xfr xb`n `lle dtyd zpadl miicerii milecen `ll ,oixyina dictelwivp`a

.mlerd lr illk

.zeirah zety ceair megza miax miyeniy zrvend dhiyl ik mipin`n ep`

,epiidc ,sqep megza mb dhiy z` milirtn ep` mihqwh beeiql sqepa ,z`fd dceara

mipeyd minegza c`n dvetp ef dniyn .hqwh irhw oia zihpnq daxw ocne`

mihqwhe milin ueaiw ,milin ly zernyn-ax zxzd oebk ,ziaeyig zepyla ly

mipelina exfrp ef diral zepexzt ,xara .'eke ze`iby iedif ,zernyna daxw itl

mirivn ep` o`k .(Latent Semantic Analysis) dieag zihpnq dfilp`ae miaygenn

xy` ,(Explicit Semantic Analysis) zyxetn zihpnq dfilp` z`xwpd dycg dyib

ly icnin-axd agxna mihqwh ly zernyn zbviine zeipekzd dpeaa zynzyn

.dictiwiene geztd jixcndn mibyen

-lk dibelecezn mirivn ep` ,ziy`x .zeircn zenexz xtqn zigkepd dcearl

ziipa .mlera milecbdn rci ixb`n zxfra zeipekz ziipal minzixebl` xtqne zil

rcin lvpl zlbeqne ,ax iyep` rcia zynzyn el` mixb`na yeniy jez zeipekz

dycg dyib mirivn ep` ,ok enk .cala beeqnd hqwhdn dwqdl ozip epi` xy`

rvan jk ici lre zepey divelefx zenxa mihqwh gzpn xy` ,xywd qqean gezipl
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