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Preface

The performance of an Artificial Intelligence system often depends on the amount of
world knowledge available to it. During the last decade, the AI community has witnessed
the emergence of a number of highly structured knowledge repositories whose collaborative
nature has led to a dramatic increase in the amount of world knowledge that can now
be exploited in AI applications. Arguably, the best-known repository of user-contributed
knowledge is Wikipedia. Since its inception less than eight years ago, it has become one
of the largest and fastest growing on-line sources of encyclopedic knowledge. One of the
reasons why Wikipedia is appealing to contributors and users alike is the richness of its
embedded structural information: articles are hyperlinked to each other and connected
to categories from an ever expanding taxonomy; pervasive language phenomena such as
synonymy and polysemy are addressed through redirection and disambiguation pages;
entities of the same type are described in a consistent format using infoboxes; related
articles are grouped together in series templates.

Many more repositories of user-contributed knowledge exist besides Wikipedia.
Collaborative tagging in Delicious and community-driven question answering in Yahoo!
Answers and Wiki Answers are only a few examples of knowledge sources that, like
Wikipedia, can become a valuable asset for AI researchers. Furthermore, AI methods
have the potential to improve these resources, as demonstrated recently by research on
personalized tag recommendations, or on matching user questions with previously answered
questions.

The goal of this workshop was to foster the research and dissemination of ideas on the
mutually beneficial interaction between AI and repositories of user-contributed knowledge.
The workshop took place on July 13, 2009, in Pasadena CA, immediately preceding the
International Joint Conference on Artificial Intelligence – IJCAI 2009.

This volume contains papers accepted for presentation at the workshop. We issued calls
for regular papers, short late–breaking papers, and demos. After careful review by the
program committee of the 20 submissions received – 13 regular papers, 6 short papers and
1 demo – 5 regular papers and 3 short papers were accepted for presentation. Consistent
with the original aim of the workshop, the accepted papers address a diverse set of problems
and resources, although Wikipedia-based systems are still dominant. The accepted papers
explore leveraging knowledge induced and patterns learned from Wikipedia and apply them
to the web or untagged text collections, using such knowledge for tasks such as information
extraction, entity disambiguation, terminology extraction and analysing the structure of
social networks. We also learn of useful methods that integrate Wikipedia with structured
resources, in particular relational databases.

The members of the program committee provided high quality reviews in a timely
fashion, and all submissions have benefited from this expert feedback.

For a successful event, having high quality invited speakers is crucial. We were lucky to
have two excellent speakers for this year’s event. We thank Eugene Agichtein and Timothy
Chklovski for their enthusiastic acceptance and presentations.

Razvan Bunescu, Evgeniy Gabrilovich, Rada Mihalcea, Vivi Nastase
July 2009
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Invited Talk 
 

Modeling Information Seeking Behavior in Social Media 
 

Eugene Agichtein 
Emory University 

http://www.mathcs.emory.edu/~eugene  
 
Abstract 
 
Social media is transforming how we seek and find information online: it is now a 
prominent part of the web information ecosystem, a powerful platform for information 
seeking, and a planet-scale experimental testbed for studying information seeking 
behavior and interactions. In particular, the Collaborative Question Answering (CQA) 
model has emerged as a potential alternative to automatic web search: participants post 
questions and answers, and rate and evaluate each other's contributions. The resulting 
archives of both the content and the context of the interactions complement the more 
limited web search interaction data, and provide a testbed for development of novel 
natural language processing, text mining, and information retrieval techniques. I will 
describe our progress on mining various traces of information seeking behavior in social 
media for tasks such as estimating content quality, search intent, and searcher satisfaction 
with the obtained results. 
 
Bio 
 
Dr. Eugene Agichtein is an Assistant Professor in the Mathematics and Computer 
Science Department at Emory University, where he founded the Intelligent Information 
Access Laboratory. He is also affiliated with the Computational & Life Sciences 
Initiative and the Linguistics program at Emory, and with the Web Science Initiative at 
the Georgia Institute of Technology. After obtaining a Ph.D. from Columbia University 
in 2005, Eugene was a Postdoctoral Researcher at Microsoft, and recently a visiting 
researcher at Yahoo!. Eugene’s research interests are in information retrieval, user 
modeling, text and data mining, and their applications to social computing and medical 
informatics. 
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Invited Talk 
 

Towards Clean, Structured Data from the Web and Volunteers 
 

Timothy Chklovski 
Factual, Inc. 

 
Abstract 
 
Having access to large amounts of clean, structured data is an important step towards 
disruptive, useful AI applications. The large amount of data on the Web and the advent of 
crowdsourcing have created unprecedented opportunities to aggregate large amounts of 
knowledge in simple structured format. This talk will review some highlights in 
collecting knowledge from volunteers and extraction from the Web. Collecting from 
volunteers will cover exciting developments in the field, as well as touch on the author's 
prior work on using acquired knowledge to ask better and better knowledge acquisition 
questions, work on collecting linguistic information (much of it joint with Rada 
Mihalcea), and work on collecting task knowledge. On the extraction front, we will touch 
on some work on extracting verb relation semantics, and quantification of adjectives. The 
talk will include a demo of the recent work at Factual, Inc. that seeks to empower broader 
audiences to both extract factual information from the Web and improve quality of the 
data through direct contributions. We will conclude with brief remarks on what the near 
future might bring. 
 
Bio 
 
Timothy Chklovski works in artificial intelligence, focusing on creating large collections 
of knowledge and algorithms for reasoning over them. His interests include broad-scale 
knowledge acquisition from volunteers, text mining, and ways to apply various 
knowledge sources in natural language understanding. Timothy completed his PhD at 
MIT in 2003, where he focused on using similarity-based reasoning to collect 
commonsense knowledge from volunteers, and later worked as a Senior Research 
Scientist at USC ISI. Since 2007, he has been working at Factual as a Founding Engineer, 
where he has been leading a small team developing practical applications for collecting 
and organizing open datasets. 
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LRTwiki: Enriching the Likelihood Ratio Test with
Encyclopedic Information for the Extraction of Relevant Terms

Niklas Jakob and Mark-Christoph Müller and Iryna Gurevych
Ubiquitous Knowledge Processing Lab

Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

{njakob, chmark, gurevych}@tk.informatik.tu-darmstadt.de

Abstract
This paper introduces LRTwiki, an improved vari-
ant of the Likelihood Ratio Test (LRT). The central
idea of LRTwiki is to employ a comprehensive do-
main specific knowledge source as additional “on-
topic” data sets, and to modify the calculation of the
LRT algorithm to take advantage of this new infor-
mation. The knowledge source is created on the ba-
sis of Wikipedia articles. We evaluate on the two re-
lated tasks product feature extraction and keyphrase
extraction, and find LRTwiki to yield a significant
improvement over the original LRT in both tasks.

1 Introduction
The identification of the most relevant terms1 in a docu-
ment collection is one of the pervasive tasks in natural lan-
guage processing. A fundamental application of this task
is keyphrase extraction [Turney, 2000], which aims at de-
termining the most important terms in a document. The
resulting keyphrases are assumed to reflect the document
topic, and they are typically used for summarization, clus-
tering, or search. Another application, which is gaining im-
portance due to the popularity of Web 2.0, is product fea-
ture extraction [Yi et al., 2003], which is often performed
on customer reviews. Here, identified product features are
used to create feature-oriented summaries of customer re-
view collections, or as the basis for extracting opinions about
features. Keyphrase extraction and product feature extrac-
tion mainly differ in their definition of “relevance”. In
keyphrase extraction, the goal is to identify those terms in
a given document which best describe its topic by distin-
guishing it from documents with different topics. Individ-
ual mentions of the same term are not considered. In prod-
uct feature extraction, on the other hand, the goal is to ex-
tract all mentions of features of a given product. At the
same time, it is important to only extract features of the prod-
uct under review, and not of any other products mentioned
e.g. in comparisons. Approaches which rely on statistical
information have been successfully employed for both ap-
plications in previous research [Tomokiyo and Hurst, 2003;

1We use term here to cover both single terms and multi-term ex-
pressions.

Yi et al., 2003]. Both of the above approaches utilize the
Likelihood Ratio Test [Dunning, 1993] (LRT), which is well
suited for the identification of relevant terms from document
collections, since it does not assume a normal distribution of
the variables (= frequencies of the terms) in the data. LRT
compares the frequencies of candidate terms in the document
collection to be analyzed with their frequencies in a general-
language corpus and calculates the likelihood that a term is
relevant for the given document collection.
For product feature extraction in customer reviews, other sta-
tistical methods have also been used: Hu and Liu [2004] try
to summarize customer reviews and present a system which
uses association mining to extract product features in opinion-
ated sentences. They only present an evaluation of the com-
bined product feature extraction and opinion mining steps,
and report an average F-measure of 0.79 with the best con-
figuration. One advantage of their system is that it does not
rely on any pre-built knowledge base, but only uses statisti-
cal information. Popescu and Etzioni [2005] employ Point-
wise Mutual Information to compute the probability that a
candidate term is a feature of a given product, and they re-
port an average F-measure of 0.758. Since the calculation
of Point-wise Mutual Information requires a very large cor-
pus, they use the web and a web search engine. Wong et
al. [2008] model product feature extraction as a Dirichlet pro-
cess prior which they then use in an Expectation Maximiza-
tion algorithm. They reach an average F-measure between
0.58 and 0.95 on their four datasets. The Sentiment Analyzer
system by Yi et al. [2003] includes a product feature extrac-
tion component utilizing base noun phrase patterns and LRT.
For their product feature extraction step (on two datasets), Yi
et al. [2003] report precision values of 0.97 and 1.0, but no
recall. In [Ferreira et al., 2008] we present a comparative
evaluation of the approaches by Hu and Liu [2004] and Yi et
al. [2003], this time evaluating product feature extraction in-
dependently of opinion detection. They find two limitations
of LRT: 1) it often fails to identify rare product features, and
2) it also often fails to identify terms that are both product
features and general vocabulary items (e.g. weight, speed,
option).

This paper introduces LRTwiki, our extension of the Likeli-
hood Ratio Test algorithm, which addresses the above limita-
tions by enriching LRT with encyclopedic information drawn
from Wikipedia. In LRTwiki, Wikipedia is employed as a
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general-purpose source of domain knowledge. We analyze
the performance of LRTwiki in two different tasks: In the
first scenario we employ the algorithm for product feature
extraction as in [Ferreira et al., 2008], in the second scenario
we employ it for keyphrase extraction as in [Tomokiyo and
Hurst, 2003]. The remainder of this paper is structured as
follows: Section 2 gives an overview of the data we use in
our experiments. Section 3 describes LRTwiki, our proposed
extension of LRT, and Section 4 contains the experimental
results and discussion. Conclusions and future work can be
found in Section 5.

2 Employed Corpora
2.1 Data for Product Feature Extraction
We use the dataset as in [Ferreira et al., 2008], for which a
corpus originally annotated by [Hu and Liu, 2004] was rean-
notated. In contrast to the original annotations, in [Ferreira et
al., 2008] we annotated all mentions of product features, irre-
spective of there being an opinion expressed about them. Ta-
ble 1 outlines some statistics on the dataset. We did not report
any inter-annotator agreement statistics before, but since we
are interested in the agreement (e.g. as an upper bound for the
evaluation of the product feature extraction task), we reanno-
tated a subset of the corpus in a controlled manner. First, we
randomly selected 60 sentences from each of the five product
review sets, and then we had two human subjects annotate
them following the guidelines presented in [Ferreira et al.,
2008]. Due to the skewed class distribution (the vast majority
of terms in product reviews are not product features), we sim-
ply calculated Precision, Recall, and F-measure (instead of
e.g. Kappa) on the overlap between the two annotators. The
overlap was calculated rather strictly by considering only ex-
act matches in the product feature annotation. The results of
the annotation overlap measurements are shown in Table 2.

Table 1: Product review datasets

Dataset Documents Sentences Feature
Mentions

Digital camera 1 (DC1) 45 597 594
Digital camera 2 (DC2) 34 346 340

Cell phone (CP) 41 546 471
MP3 player (MP3) 95 1716 1031
DVD player (DVD) 99 739 519

Table 2: Annotation overlap for product feature mentions

Dataset Sentences Words Features F-measure
DC1 60 980 67 0.736
DC2 60 1029 69 0.747
CP 60 1001 63 0.825

MP3 60 830 46 0.745
DVD 60 883 52 0.477

An analysis of the annotation overlap shows that product
feature extraction is not a trivial task. F-measure on the DVD

player dataset is particularly low. We observe that this is due
to excessive usage of abbreviations regarding the product in
this document collection (e.g. referring to the product with
just its model number) and some disagreement regarding their
annotation.

2.2 Data for Keyphrase Extraction
The data we employ in our keyphrase extraction experiments
is originally from the DUC2001 dataset [Over, 2001]. The
corpus consists of 309 news articles with keyphrases anno-
tated by Wan and Xiao [2008]. The articles cover 30 different
news topics and have an average length of 740 words. The an-
notation involved two annotators, who were allowed to select
a maximum of 10 distinct keyphrases per document. Wan and
Xiao report an inter-annotator agreement of 0.70 κ. After the
annotation, the annotators created the final gold standard by
resolving conflicting annotations in a discussion. The average
number of keyphrases per document is 8.08, and the average
number of words per keyphrase is 2.09 [Wan and Xiao, 2008].
Since LRT requires a collection of “on-topic” documents for
extracting the most relevant terms, we selected the two largest
subsets of the DUC2001 datasets. Each of the two subsets
(DUC IDs: d06a & d34f) contains 16 documents.

3 LRT and LRTwiki

3.1 LRT
LRT was introduced by Dunning [1993] and has been em-
ployed for many different NLP-related tasks, since the algo-
rithm does not assume that the population it operates on is
distributed normally or approximately normally, which is true
for the frequencies of terms in a text. In short, LRT identi-
fies relevant terms from a document collection by comparing
the frequencies of the candidate terms in the “on-topic” docu-
ments with their frequencies in a general language “off-topic”
document collection. It uses a contingency table for the cur-
rent candidate term T , for which the frequency related values
C11 to C22 are extracted from the “on-topic” document col-
lection D+ and the “off-topic” document collection D−. Ta-
ble 3 outlines the different elements of the contingency table,
the LRT definition is shown in Equation (1).

Table 3: Contingency table for candidate term T

D+ D−
T C11 C12

T C21 C22

r1 =
C11

C11 + C12
, r2 =

C21

C21 + C22
, r =

C11 + C21

C11 + C12 + C21 + C22

lr =(C11 + C21) log(r) + (C12 + C22) log(1− r)− C11 log(r1)

− C12 log(1− r1)− C21 log(r2)− C22 log(1− r2)

− 2 log λ =

{
−2 ∗ lr if r2 < r1
0 if r2 ≥ r1

(1)
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In their application of LRT to product feature extraction, Yi
et al. [2003] and Ferreira et al. [2008] report high precision
but low recall. As already described in Section 1, in [Ferreira
et al., 2008] we observe that LRT typically misses product
features that have a low frequency in the “on-topic” document
collection - e.g. because only very few customers comment on
them - even if they do not occur in the “off-topic” document
collection at all. In addition, LRT also misses terms which
are both product features and general vocabulary items, such
as speed, option, flexibility. Section 3.2 describes LRTwiki,
which is our proposed enhancement of LRT specifically tar-
getting these two shortcomings.

3.2 LRTwiki

LRTwiki aims at improving the ranking of candidate terms of
two problematic candidate classes:

1. Candidate terms which occur in the “on-topic” docu-
ment collection with low frequency and not at all or with
a low frequency in the “off-topic” document collection

2. Candidate terms which occur both in the “on-” and “off-
topic” document collection with medium or high fre-
quency

The central idea of LRTwiki is to employ a comprehensive
domain specific knowledge source containing the terminol-
ogy typically used in the current domain as the source of ad-
ditional “on-topic” data sets, and to modify the calculation
of the LRT algorithm to take advantage of this new knowl-
edge source. The knowledge source is created on the basis of
Wikipedia.

Wikipedia Data
We chose the free online encyclopedia Wikipedia for two rea-
sons: 1) Due to its broad coverage, we can expect it to contain
articles about many topics. 2) Due to the encyclopedic style
of Wikipedia articles, they tend to focus on a single topic, and
normally do not contain irrelevant information.

Since our goal is to extract an additional corpus about the
pre-defined topic(s) dealt with in the document collection to
be analysed, we assume the topic to be known in advance.
We then query Wikipedia in order to retrieve one article for
each topic as the seed for retrieving the new “on-topic” data
sets. For the product classes from the Hu and Liu dataset,
we used the names provided in their paper (digital camera,
dvd player, mp3 player, cell phone). For each of these topics
there is either a Wikipedia article with the same title or an au-
tomatic redirect page (mp3 player → Digital audio player).
For the DUC data, we read the documents and inferred
the topics “police brutality” (d06a), for which Wikipedia
contains an article, and “atlantic hurricanes” (d34f), which
is redirected to “North Atlantic tropical cyclone”. The
Wikipedia-based document collection for each topic is built
by extracting the categories to which the seed article belongs
and then extracting all articles found in these categories. We
performed a simple ad-hoc filtering only: We ignored all
subcategories of “Wikipedia administration”, since they do
not carry any semantic content, and all categories with more
than 200 articles, since we regard them as too broad. The
article pages retrieved in this manner were then automat-
ically cleaned of all Wikipedia markup, metainformation,

references, and hyperlinks. The data we retrieved is extracted
from a Wikipedia dump from Feb. 2007. Some statistics
about the resulting data is given in Table 4.

Table 4: Content retrieved from Wikipedia

Wikipedia Seed Article Retrieved Word CountArticles
digital camera 263 161459

cell phone 250 204410
digital audio player 64 79099

dvd player 100 99898
north atlantic tropical cyclone 403 459046

police brutality 166 127216

Modifying the LRT Algorithm
The new Wikipedia content provides an additional document
collectionDW on the basis of which we can calculate C13 for
a given term T , which are defined in analogy to Table 3. With
these new values we modify the calculation of the original
LRT lr as follows:
lrmod =(C11mod + C21) log(r) + (C12mod + C22) log(1− r)

− C11mod log(r1)− C12mod log(1− r1)− C21 log(r2)

− C22 log(1− r2)

C11mod =

{
C11 + C13 if C11 < t1 and C12 < t1
C11 + C13 if C11 > t2 and C12 > t2

C12mod =

{
0 if C11 < t1 and C12 < t1
max (0, C12 − C13) if C11 > t2 and C12 > t2

(2)

The two thresholds t1 and t2 are used to set the boundaries
for terms with low frequency (t1) and terms with medium or
high frequency (t2).

4 Experiments
We model term extraction as a two-step process. In the
first step, candidate terms are extracted, and in the second
step, these candidates are ranked on the basis of their LRT /
LRTwiki values. An overview of our architecture is shown
in Figure 1. As in [Ferreira et al., 2008], we employed the
600 randomly selected documents from the UKWaC British
English web corpus [Ferraresi et al., 2008] as an “off-topic”
corpus (D−).

4.1 Product Feature Extraction
For the product feature extraction evaluation, we follow the
approach of Yi et al. [2003]. They specify their candidate
patterns as the following Base Noun Phrases (BNP): NN, NN
NN, JJ NN, NN NN NN, JJ NN NN, JJ JJ NN. These patterns
are applied inclusively, i.e. multi-term expressions (e.g. digi-
tal camera) are allowed to be matched more than once. This
way, occurrences of terms as parts of multi-term expressions
(e.g. camera) are counted several times, thus boosting the ex-
traction of the embedded term. After extracting the candidate
terms, both LRT versions calculate the likelihood score for

5
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Figure 1: Term extraction architecture

each. The resulting ranked list has then to be transformed
into a set of relevant and irrelevant features. Yi et al. [2003]
address this issue by selecting the top n features as relevant,
where n is the number of candidate features selected by the
most restrictive BNP pattern set of “beginning definite Base
Noun Phrases” [Yi et al., 2003]. While this approach can
lead to a high precision extraction, it unfortunately suffers
from an extremely low recall. Therefore, we propose a dif-
ferent method for selecting the threshold for distinguishing
relevant from irrelevant terms, which is based on the algo-
rithm for outlier detection presented in [Wilcox, 2001, page
38]. According to this method, the threshold tLRT for feature
extraction is set to:

tLRT = mlr + sdlr (3)

where mlr is the mean likelihood value and sdlr is the stan-
dard deviation.
Table 5 shows the results obtained in [Ferreira et al., 2008]
and our experiments. The column “LRT Wilcox Threshold”
shows the effect of the dynamic threshold calculation while
using our reimplementation of the original LRT algorithm.
The column “LRTwiki Wilcox Threshold” shows the results
obtained by employing the dynamic threshold calculation and
LRTwiki. Following [Ferreira et al., 2008], we perform an
evaluation on each mention of a product feature, compar-
ing the lowercased and lemmatized forms of the automati-
cally extracted features with those in the gold standard. For
LRTwiki, we set t1 to 5, which was empirically defined in or-
der to reflect a threshold under which we consider a term to
be rare. Likewise, the threshold t2 was set to 10, meaning we
consider terms which are found more often to be frequently
occurring. These thresholds are optimal to the corpora we
experimented with while smaller or larger values might make
sense for different input corpora D+.

4.2 Keyphrase Extraction
As we are interested in an state-of-the-art approach for
keyphrase extraction which is also unsupervised, we employ
the TextRank system [Mihalcea and Tarau, 2004]. We follow
Mihalcea & Tarau by selecting only adjectives and nouns as
candidate terms. The matching is done in a greedy fashion on
the terms’ POS tags with the following regular expression:
(JJ |JJR|JJS)∗(NN |NNS|NP |NPS)+. Greedy match-
ing makes sure that only the longest matching phrases in a
sentence are selected as candidates. This matching strategy is
based on the observation that complete noun phrases are typi-
cally annotated as keyphrases in the DUC data set. For exam-
ple “accidental shooting death” is annotated as a keyphrase
and not just “shooting death” or “death”. Contrary to product
features, there is no clear-cut definition of what is and what is
not regarded as a keyphrase for a document. Therefore, dur-
ing our evaluation, we did not employ a threshold like in 4.1.
Alternatively, we evaluate Precision, Recall and F-measure of
the top-n extracted keyphrases. As a baseline system we em-
ploy TextRank in its default configuration. The keyphrases
extracted by the TextRank system, the two versions of LRT,
and the keyphrases in the gold standard are lemmatized and
lowercased before comparison. When employing LRTwiki,
we use the same thresholds t1 and t2 as described in Sec-
tion 4.1. We evaluate the top-n keyphrases (n ≤ 10) on the
two datasets each containing 16 documents as described in
Section 2.2. The results of the keyphrase extraction evalua-
tion are shown in Table 6.

4.3 Error Analysis
As evident from Tables 5 and 6, LRTwiki consistently and
significantly2 improves F-measure in both applications. In
the following, we perform an error analysis in the two appli-
cations separately.

Product Feature Extraction Error Analysis
When comparing the results of “LRT Wilcox” with “LRT
in [Ferreira et al., 2008]“, one can already observe a con-
stant improvement in precision and recall. This shows that
the extraction strategy is also an important aspect of the LRT
which might deserve further research. In the task of product
feature extraction, the recall slightly decreases when compar-
ing LRT and LRTwiki on two of the datasets (DC2, MP3).
However, the concurrent gains in precision outweigh them,
leading to an overall higher F-measure. The decrease of re-
call on some datasets can be explained as follows: A sub-
stantial amount of terms belonging to the specific vocabulary
of the domain have C11 and C12 values smaller than t1 and
therefore receive a boosting from the new Wikipedia content.
The boosting often pushes their lrmod values into regions of
other terms which have a C11 > t1 and which would there-
fore typically be extracted as relevant. However, the boosting
effect raises the overall average likelihood ratio, which we
use to separate the relevant from the irrelevant terms. At the
same time, there are typically quite a few terms which occur

2Significance of improvement in F-measure is tested using a
paired one-tailed t-test and p ≤ 0.05 (∗), p ≤ 0.01 (∗∗), and p ≤
0.005 (∗∗∗)
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Table 5: Product Feature Extraction
LRT in [Ferreira et al., 2008] LRT Wilcox Threshold LRTwiki Wilcox Threshold

Dataset P R F P R F P R F ∆ F
DC1 0.671 0.495 0.570 0.750 0.513 0.609 0.760 0.574 0.654 +0.045∗
DC2 0.634 0.347 0.449 0.800 0.485 0.604 0.875 0.474 0.615 +0.011∗
CP 0.659 0.459 0.541 0.579 0.535 0.556 0.813 0.544 0.651 +0.095∗

MP3 0.339 0.408 0.370 0.513 0.665 0.579 0.560 0.661 0.606 +0.027∗
DVD 0.506 0.243 0.328 0.633 0.416 0.502 0.667 0.458 0.543 +0.040∗

Table 6: Keyphrase Extraction

TextRank LRT LRTwiki

Dataset n P R F P R F P R F ∆ F
d06a 1 0.188 0.029 0.051 0.000 0.000 0.000 0.062 0.010 0.017 +0.017∗∗∗

(16 docs) 2 0.125 0.039 0.060 0.094 0.030 0.045 0.375 0.119 0.180 +0.135∗∗∗
3 0.083 0.039 0.053 0.250 0.119 0.161 0.333 0.158 0.215 +0.054∗∗∗
4 0.094 0.059 0.072 0.281 0.178 0.218 0.328 0.208 0.255 +0.037∗∗∗
5 0.088 0.069 0.077 0.250 0.198 0.221 0.325 0.257 0.287 +0.066∗∗∗
6 0.073 0.069 0.071 0.250 0.238 0.244 0.312 0.297 0.305 +0.061∗∗∗
7 0.071 0.078 0.075 0.232 0.257 0.244 0.295 0.327 0.310 +0.066∗∗∗
8 0.070 0.088 0.078 0.234 0.297 0.262 0.273 0.347 0.306 +0.044∗∗∗
9 0.069 0.098 0.081 0.222 0.317 0.261 0.250 0.356 0.294 +0.033∗∗∗

10 0.075 0.118 0.092 0.219 0.347 0.268 0.238 0.376 0.291 +0.023∗∗∗
d34f 1 0.467 0.053 0.096 0.062 0.008 0.014 0.062 0.008 0.014 +0.000∗∗∗

(16 docs) 2 0.500 0.115 0.186 0.062 0.015 0.024 0.062 0.015 0.024 +0.000∗∗∗
3 0.500 0.168 0.251 0.042 0.015 0.022 0.062 0.023 0.033 +0.011∗∗∗
4 0.448 0.198 0.275 0.062 0.030 0.041 0.078 0.038 0.051 +0.010∗∗∗
5 0.431 0.237 0.305 0.100 0.061 0.075 0.150 0.091 0.113 +0.038∗∗∗
6 0.393 0.252 0.307 0.115 0.083 0.096 0.167 0.121 0.140 +0.044∗∗∗
7 0.396 0.290 0.335 0.125 0.106 0.115 0.170 0.144 0.156 +0.041∗∗∗
8 0.374 0.305 0.336 0.148 0.144 0.146 0.172 0.167 0.169 +0.023∗∗∗
9 0.350 0.313 0.331 0.139 0.152 0.145 0.167 0.182 0.174 +0.029∗∗∗

10 0.325 0.313 0.319 0.138 0.167 0.151 0.169 0.205 0.185 +0.034∗∗∗

in almost every sentence (e.g. the product under review) and
which therefore influence the standard deviation. In general,
the boosting modification leads to a substantial increase in
the average likelihood ratio, while hardly affecting the stan-
dard deviation. This leads to a slight increase in the thresh-
old for the extraction of terms, with some relevant terms no
longer reaching it. On the DC1 dataset, e.g. LRTwiki extracts
the correct product features “control”, “film”, and “sensor”,
while the original LRT misses them. At the same time, us-
ing LRTwiki, the correct features “external flash” and “lcd
screen” do not reach the threshold any more while the origi-
nal LRT extracts them.
This effect on the average likelihood ratio (which is even
more pronounced for the standard deviation) is caused by the
modification which aims to improve the extraction of relevant
terms also occurring in the general language corpus. Such
candidates typically have a rather high C11 value, and due to
the Wikipedia content their C12 value is reduced, leading to
a very high likelihood ratio, which in turn leads to a higher
standard deviation.

The inclusion of the Wikipedia documents also exacer-
bates one of the issues mentioned in [Ferreira et al., 2008]:
If several reviews mention products of another manufacturer
or a different model (e.g. in comparisons), LRT (and also

LRTwiki) will extract them. Since the documents from
Wikipedia are typically not limited to a single product, but
rather to a product class, they tend to contain names of several
different models and manufacturers. If such a name is men-
tioned in the “on-topic” documents, its likelihood ratio will
be boosted due to our algorithm modification. Overall, how-
ever, LRTwiki still leads to a significant improvement over
LRT regarding F-measure.

Keyphrase Extraction Error Analysis
When comparing the results of the keyphrase extraction based
on both versions of LRT with TextRank as a baseline, we ob-
serve that on the d06a dataset both LRT versions perform con-
siderably better and on the d34f dataset considerably worse
than the TextRank system. However, the performance of
TextRank on the d34f dataset is much better than its average
on the entire DUC2001 dataset: TextRank yields an overall
F-measure of 0.132 at 10 extracted keyphrases on the entire
DUC2001 dataset3, while on the d34f dataset it reaches an
F-Measure of 0.319 at 10 extracted keyphrases. This is due
to the fact that, with three to five words, the keyphrases on
the d34f subset are rather long compared to those in the other
document sets (overall average keyphrase length in words:

3We obtained this result in a separate experiment.
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2.0). When employed in a keyphrase extraction task, both
versions of LRT have the limitation that the relevance of a
term is calculated on the overall document collection. How-
ever, keyphrases are annotated with respect to their impor-
tance in individual documents. Therefore, LRT often fails to
extract keyphrases which are only relevant for one document.
This definition of relevance is different from the product fea-
ture extraction task, as terms are regarded as relevant over the
entire document collection.

5 Conclusions and Future Work
In this paper we presented LRTwiki, an enhancement of the
Likelihood Ratio Test, which makes use of encyclopedic doc-
uments retrieved from Wikipedia. The enhanced algorithm
leads to an improvement regarding the relevance ranking of
terms. Since Wikipedia is available in many languages and
its content is very broad, is seems to be a well suited resource
for extending a statistical method for term mining. We also
propose a method to calculate the threshold for the separa-
tion of relevant and irrelevant terms. In our empirical eval-
uation, LRTwiki yielded a significant improvement regard-
ing F-measure in two different tasks: keyphrase extraction
and product feature extraction. A limitation which remains
for product feature extraction regards terms which belong to
the current domain, but which are not features of the prod-
uct under review. Although somewhat less consistent, our re-
sults show that LRTwiki might also be a promising candidate
for keyphrase extraction. While our enhancements consis-
tently improve the results regarding F-measure over the orig-
inal LRT, both LRT and LRTwiki are inferior to the non-LRT
baseline on one of two datasets. In future work, we plan to
further investigate this issue.
Other lines of future work include the following: We plan to
improve the threshold calculation for the separation of rele-
vant and irrelevant terms, since the current approach is opti-
mized for the original LRT, and not yet for LRTwiki. We will
also address remaining issues regarding the product feature
extraction task. For this, we plan to extract additional infor-
mation regarding individual products (e.g. product and manu-
facturer names) from Wikipedia, and to use this information
to filter out feature candidates not pertaining to the product
under review. We plan to extract this additional information
from semi-structured Wikipedia content (e.g. links, lists, and
tables), thus going beyond treating Wikipedia articles as flat
documents.
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Abstract 
Large repositories of knowledge can enable more 
powerful AI systems. Information Extraction (IE) 
is one approach to building knowledge repositories 
by extracting knowledge from text. Open IE 
systems like TextRunner [Banko et al., 2007] are 
able to extract hundreds of millions of assertions 
from Web text. However, because of imperfections 
in extraction technology and the noisy nature of 
Web text, IE systems return a mix of both useful, 
informative facts (e.g., "the FDA banned ephedra") 
and  less informative statements (e.g., "the FDA 
banned products"). 
 

This paper investigates using user-contributed 
knowledge from Wikipedia and from TextRunner 
website visitors to train classifiers that 
automatically filter extracted assertions. In a study 
of human ratings of the interestingness of 
TextRunner assertions, we show that our approach 
substantially enhances the quality of results. Our 
relevance feedback filter raises the fraction of 
interesting results in the top thirty from 41.6% to 
64.1%. 

1 Introduction 
Information extraction (IE) is a subfield of natural language 
processing that seeks to obtain structured information from 
unstructured text. IE can be used to automate the tedious 
and error prone process of collecting facts from the Web. 
Open IE is a relation-independent form of IE that scales 
well to large corpuses. Figure 1 presents the output of the 
TextRunner Open IE system [Banko et al., 2007] in 
response to the question “What has the FDA banned?”. 
TextRunner homes in on such answers as “ephedra” and 
“most silicone implants” and frees people from sifting 
through many Web pages to find the desired answers. 

Unfortunately, extraction engines, like search engines, 
intermix relevant information with irrelevant information. 
This problem is exacerbated in IE systems because they use 
heuristic methods to extract phrases that are meant to denote 

entities and relationships. Thus, in response to the above 
question, an extraction engine like TextRunner also returns 
such uninformative answers as “products” and “the drug”. 
Experiments presented in this paper show that people find 
58.4% of the thirty top-ranked answers returned by 
TextRunner to be uninformative.  

Extraction engines therefore could be improved by 
filtering based on models of which extracted assertions are 
of interest and which are not. See Figure 2 for an overview 
of this idea. Of course, the notion of interestingness is 
subjective, personal, and context specific. Nevertheless, any 
system that returns ranked results, from Google to 
TextRunner, either implicitly or explicitly utilizes a model 
of what is interesting in its ranking function.  

A challenge here is that while people can identify what is 
interesting to them, it is less clear how computers can do 
this algorithmically. We could implement several theories of 
interestingness from psychology such as complexity, 
novelty, uncertainty, and conflict [Silvia, 2006], but it is 
unclear which, if any, is best. The most accurate method 
would be if we could have people go through and specify 
which of the extracted assertions are of interest. 

Filtering Information Extraction via User-Contributed Knowledge 
 

Thomas Lin, Oren Etzioni, James Fogarty 
Computer Science & Engineering 

University of Washington 
Seattle, WA 98195, USA 

{tlin, etzioni, jfogarty}@cs.washington.edu 
 
 

Figure 1. TextRunner results for the question  
“What has the FDA banned?”. This paper examines the 

filtering of such results to focus on interesting assertions. 
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However, as TextRunner has over 800 million extracted 
assertions, it would be prohibitively expensive to hand-label 
every assertion. Instead, we collect labels on a small but 
general subset of the data, and then generalize by using this 
as training data for a classifier filter that combines basic 
features and psychology theories. We also leverage large 
available repositories of user-contributed knowledge. Using 
Wikipedia Infobox matching to automatically classify 
assertions, we are able to inexpensively generate additional 
sizable sets of assertions that are likely to be interesting and 
not interesting to train a classifier. Figure 3 shows our 
process for using user-contributed knowledge. 

This paper proposes several models of what is interesting, 
presents our implementation of these models as filters, and 
reports on measurements of their efficacy on a sample of 
queries. The main contributions of this paper are to: 

 

• Introduce several practical models of interestingness 
that, when implemented as filters, offer substantial 
improvements over the existing technique of sorting 
assertions by frequency. These models are informed by 
previous work, theories, and user-contributed 
knowledge. Our models could be easily adapted to aid 
other Web-based extraction systems, such as PowerSet. 

 

• Utilize a machine-learning method that leverages all the 
models, together with relevance feedback, to filter out 
uninteresting assertions resulting from extraction. 
 

• Report on the first study of interestingness in 
extraction. For this study we compare the efficacy of 
our models to each other and the TextRunner baseline. 
Among other findings, we show that our filtering 
significantly improves the fraction of interesting results 
contained within TextRunner’s top thirty results from 
41.6% interesting to 64.1% interesting. 

The remainder of this paper is organized as follows. 
Section 2 introduces TextRunner and related work. Section 
3 describes our models of interestingness and how we 
operationalize them as filters. Section 4 presents a study 
evaluating those models. We then conclude with a 
discussion. 

 
2 Background 
The TextRunner system crawls the Web and extracts 
information as triples that take the form (entity, relation, 

entity).  The relation string is meant to denote the 
relationship between the two entities. For example, if the 
sentence “Franz Kafka was born in Prague, at the time part 
of Austria” were found on a webpage, then one extraction 
would be (“Franz Kafka”, “was born in”, “Prague”). 

This extraction process is based in an automatically 
trained extractor [Banko and Etzioni, 2008]. The extractor is 
domain independent and relation independent (Open IE), 
and has been run on 500 million high-quality webpages 
yielding over 800 million extractions. These are indexed in 
Lucene and can be queried by entity or relationship. 

As shown in Figure 1, TextRunner results are returned 
ranked by frequency. TextRunner ranks results by frequency 
because, all other things being equal, extractions that appear 
frequently on high-quality Web pages are more likely to be 
correct [Downey et al., 2005]. However, experience has 
shown that this technique also yields many vague or 
otherwise uninteresting assertions. 

2.1 Related Work 
Traditional Information Extraction 
A key aspect of this study is that in order to scale better to 
the full Web, we are studying models that can improve the 
interestingness of Web extractions in a domain independent 
and relation independent way. This is important because 
lexical rules (e.g. “all assertions about what companies 
Microsoft has bought are interesting”) might work well for 
particular domains or relations but not apply more generally. 
 In traditional IE systems, system developers pre-specify 
relations of interest and then provide training examples. For 
example, the NAGA system [Kasneci et al., 2008] has 
considered methods for evaluating quality of web 
extractions, but their work is grounded in a graph 
representation based on the specific set of relationships that 
they chose to extract. This limited set of relationships meant 
that they could only evaluate 12 of 50 queries for one of 
their benchmarks. 

 

Systems that Consider Interestingness 
The general concept of using interestingness as a metric has 
value and applicability to a wide range of domains. For 
instance, Flickr recently launched a new feature1 for 
identifying “Interestingness” in photos on its site. The Flickr 

                                                 
1  http://www.flickr.com/explore/interesting/ 

 

 
the FDA banned Ephedra  
the FDA banned products 
Diet Coke contains 12 
Diet Coke has Aspartame  
Einstein won a Nobel Prize  
Einstein didn’t taste 

Figure 2. Filtering the output of Open IE enables it to better focus on extracted assertions that are more interesting. 
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notion is based on social feedback such as click data and 
comments, supporting the idea that people care about what’s 
interesting and leave indirect clues to where interesting 
content can be found. We use a similar concept later in 
learning from how people populate Wikipedia infoboxes. 

Similarly, automated mathematical discovery programs 
require a notion of interestingness in order to identify which 
potential conjectures and concepts will be of interest to 
people. Colton and Bundy’s survey [1999] identified several 
key concepts that these programs tended to use in deciding 
what would be interesting, including plausibility, novelty, 
surprisingness, comprehensibility and complexity. Liu et al. 
[2000] found that unexpected database association rules are 
more interesting to users. 

 

What Makes Text Interesting? 
Beyond the psychological work mentioned in the 
introduction, there has also been research into what makes 
text more interesting. It is important that text be the right 
level of complexity. Sentences with concrete words were 
found to be more interesting than abstract sentences 
[Sadoski et al., 1993]. Texts that are more coherent and 
easier to comprehend are more interesting [Schraw, 1997]. 
Prior knowledge in the subject generally increases interest. 
These ideas inform some of our classifier features later. 

3 What’s Interesting? 
This section describes the problem of interestingness, then 
introduces three practical models for identifying interesting 
assertions. For each model, we first present an intuition 
behind characteristics that can make assertions interesting. 
We then operationalize those characteristics so that we can 
express them algorithmically. 

We want to capture the interesting assertions, but what 
exactly does this mean? At the most general level, we define 
interesting assertions to be those that a person may find 
useful or engaging. For any particular query (e.g., 
“Einstein”), the extent to which possible assertions are 
interesting may vary greatly. A good set of results might, for 
example, include a mix of biographical facts like “Einstein 
was born in Germany” and other interesting facts like 
“Einstein's favorite color was blue”. On the other hand, 

“Einstein turned 15” or “Einstein wrote the paper”, would 
be less interesting because they express little useful 
information. 

In a discussion of what is interesting, personalization is 
one approach to consider. Different people will find 
different topics to be interesting. We consider personalized 
notions of interesting to be a future direction, but currently 
focus on what characteristics make an assertion broadly 
interesting to a variety of people.  

3.1 Specific Assertions 
One quality of interesting assertions is that they tend to 
provide more specific information. For example, “Albert 
Einstein taught at Princeton University” is more interesting 
than “Albert Einstein taught at a university” because 
identifying Princeton as the university is informative. We 
hypothesize this is one characteristic that can make 
assertions interesting more broadly in TextRunner. 

To operationalize this quality, we define a specific 
assertion as an assertion that either relates multiple proper 
nouns or an assertion that contains a year. If an assertion 
relates multiple proper nouns, it is specific because it 
expresses information about one specific entity relative to 
another. Similarly, an assertion that contains a year is 
specific because it contains specific temporal information.  

3.2 Distinguishing Assertions 
Another quality of interesting assertions might be providing 
distinguishing information about an object. This is related to 
novelty and surprisingness. Einstein may be a physicist who 
was born in Germany, but what really sets him apart and 
makes him interesting are his contributions to relativity 
theory and that he won the Nobel Prize. Conversely, 
assertions that do not set an object apart from other objects 
are often uninteresting.  

We operationalize this notion of distinguishing using a 
technique similar to TF-IDF (term frequency – inverse 
document frequency) weighting [Salton and Buckley, 1988].  
In IR, term frequency refers to the number of times a term 
occurs in a document.  For our term frequency component, 
we define AssertionFrequency as the number of times an 
assertion occurs in the TextRunner set of assertions (e.g., 

 
Figure 3. We train our filter using examples of good and bad assertions from TextRunner. We have filters based on both user 

labels and a Wikipedia Infobox approach that allowed us to easily leverage a large amount of user-contributed knowledge.  
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the number of times TextRunner found that “Einstein won 
the Nobel Prize”). For our document frequency component, 
we define ObjectFrequency as the number of times the 
object (e.g., “the Nobel Prize”) appears in a sample of ten 
million random TextRunner assertions. We define an 
AFOFRatio(Extraction) as follows2: 
 

ሻܧሺ݅ݐܴܽܨܱܨܣ ൌ
ሻܧሺݕܿ݊݁ݑݍ݁ݎܨ݊݅ݐݎ݁ݏݏܣ

ሻ൯ܧሺݐ݆ܾܿ݁൫ݕܿ݊݁ݑݍ݁ݎܨݐ݆ܾܱܿ݁   1
 

 
For assertions, the AFOFRatio compares how often the 
assertion appears with how often we would expect the 
assertion to appear given its object. If the object has 
extremely high ObjectFrequency (e.g., a common word like 
“food”), the AFOFRatio will be low. If the object has 
extremely low ObjectFrequency (e.g., a misspelling or 
obscure term), then the AFOFRatio will be high. In the case 
of average ObjectFrequency, the AFOFRatio will reflect 
whether the assertion appears more often than one would 
normally expect. 

Informal experimentation confirmed that extremely low 
AFOFRatio values often indicate an assertion is too vague 
to be interesting, while the very highest AFOFRatio values 
generally indicated assertions that were not well formed or 
well expressed. We chose a middle range (1 < AFOFRatio ≤ 
10) that seemed to generally yield interesting assertions 
from the distinguishing perspective. 

3.3 Basic Assertions using Wikipedia 
The final quality of interesting assertions that we focus on 
here are basic facts, definitional assertions that, for example, 
might be interesting to a person learning about an object. A 
person learning about Einstein, for example, might look up 
such facts as “Einstein was a physicist” or “Einstein was 
born in 1879”. Although it would be difficult to define all-
encompassing rules for what makes an assertion basic, we 
can take advantage of the fact that user-contributed 
knowledge bases like Wikipedia provide high quality 
examples of basic knowledge. Many Wikipedia articles 
contain infoboxes, tabular summaries of basic information 
about objects. Our operationalization of basic assertions, is 
therefore based in learning a classifier to identify assertions 
like those that human editors have decided to include in 
infoboxes. 

Training a classifier with Wikipedia infobox data allows 
us to automatically leverage enough existing high quality 
human-generated knowledge to bootstrap learning [Wu and 
Weld, 2007]. We first obtain training data by automatically 
finding TextRunner assertions that reflect the information 
found in infoboxes. Notable people generally have 
populated Wikipedia infoboxes, so we obtain our training 
data using queries for famous people. We used the DBPedia 
Wikipedia Infobox database [Auer et al., 2007] and applied 

                                                 
2  We add 1 in the denominator to prevent possible division by 0. 

a series of filters to isolate a set of notable people with high 
quality infoboxes. We then matched the infobox data against 
TextRunner to obtain 1,584 assertions that reflected 
information found in infoboxes, to use as positive training 
examples, and an even larger set of assertions that did not 
match infoboxes, to use as negative training examples. 

We train our basic classifier using around ten domain-
independent features, such as the number of words in the 
assertion, whether the assertion relates proper nouns, and 
the estimated frequency of the assertion’s object argument 
in TextRunner. Lexical features (those specific to the query 
terms, such as learning that any assertion with the relation 
“was born in” is interesting), are intentionally omitted 
because we are interested in a generally applicable classifier 
that is effective regardless of whether it was trained on 
assertions similar to those that it will classify (e.g., “was 
born in” is useless on assertions about fruits). An 
experiment showed that the lexical features enable greater 
precision at the cost of reduced recall and generality. 
 If we already have Wikipedia and we hypothesize that the 
infobox attributes are what’s interesting, then why not just 
use all the Wikipedia data instead of using Web extraction? 
The key point here is that compared to the full Web, 
Wikipedia is incomplete. Many entities do not have 
Wikipedia articles, either because they have not been 
written yet or because they do not belong in a general 
encyclopedia. Even when an entity does have a Wikipedia 
article, often the infobox is incomplete or even missing. 
Also, while infobox attributes are good starting point for 
basic knowledge, there exist many additional similar 
attributes that also express basic knowledge. Web extraction 
has the potential for much greater coverage, both in terms of 
entities covered and attributes per entity. 

4 Evaluating Human Ratings of Interesting 
In order to evaluate our specific, basic, and distinguishing 
models, we used them each as the basis for filters that 
discard TextRunner results that fail to satisfy each model. 
To assess the quality of each filter, we conducted a study to 
collect human ratings of the interestingness of assertions.  

4.1 Method and Procedure 
We first selected a set of ten study query terms including 
famous people (Albert Einstein, Bill Gates, Thomas Edison), 
other proper nouns (Beijing, Brazil, Microsoft, Diet Coke), 
improper nouns (sea lions), and also relationship queries 
(invented, destroyed). This query set is meant to provide a 
varied sample of the sorts of queries for which TextRunner 
can provide interesting results. Our analyses are based on 
the top thirty assertions resulting from each of these queries, 
because the top results have the greatest impact on utility 
and about thirty results can be seen at a glance on a 
TextRunner results page. 

As a baseline for comparison, we first obtain the number 
of times each assertion was found by TextRunner, and so 
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our AssertionFrequency condition examines the thirty most 
frequently occurring assertions. We next obtain assertions 
for our specific, distinguishing, and basic conditions by 
applying each of our filters in order of assertion frequency, 
discarding results that fail the filter, until we obtain thirty 
results that satisfy the filter. The study therefore focuses on 
1200 assertions (10 queries * 4 conditions * 30 assertions). 

We recruited 12 study participants (7 female), who had a 
variety of backgrounds including math, marketing, finance, 
music, and nursing. Participants were each asked to rate 200 
assertions on a scale from 1 (labeled “Least Interesting”) to 
5 (labeled “Most Interesting”). Assertions were presented 
one at a time, drawn randomly without replacement between 
participants. We gathered two or three ratings for every 
assertion, helping to account for individual differences in 
what people consider interesting. 

4.2 Results 
We analyze participant ratings of interestingness using a 
mixed-model analysis of variance. We model our variable of 
interest, condition (values AssertionFrequency, simple, 
distinguishing, and basic), as a fixed effect. To account for 
learning or fatigue effects, we model trial number as a fixed 
effect. Similarly, we account for the possibility that how 
long a person viewed an assertion might impact their rating 
by modeling time to rate as a fixed effect. Finally, we 
account for variations in the interestingness of queries and 
variations in the ratings given by different people by 
modeling both query and participant as random effects. 

We found no significant effect of either trial number or 
time to rate, and so remove both of them from the remainder 
of our analysis. The omnibus test reveals a significant main 
effect of condition (F(4, 3542) = 15.6, p < .0001), leading us 
to investigate pairwise differences. We use Tukey’s 
Honestly Significant Difference (HSD) procedure to 
account for increased Type I error in unplanned 
comparisons. This shows basic yielded the most interesting 
assertions, significantly more interesting than 
AssertionFrequency (F(1,3545) = 55.0, p < .0001), specific 
(F(4,3539) = 7.7, p ≈ .005), and distinguishing 
(F(1,3547) = 10.3, p ≈ .001). Our other filters also 
significantly improved interestingness, as both specific 
(F(1,3544) = 21.2, p < .0001) and distinguishing (F(1,3539) 
= 18.7, p < .0001) were significantly more interesting than 
AssertionFrequency. 

4.3 Relevance Feedback 
Although our results showed that basic assertions are the 
most interesting and that all of our filters yield results that 
are significantly more interesting than AssertionFrequency, 
inspection of our data suggested that our filters identify 
different interesting assertions. We found that only 21% of 
the interesting assertions would be identified by all three 
filters. We therefore consider whether a learning-based 
method, using a classifier to combine information from all 
three filters, might perform better than any single filter. 

In this case our training data is from study participants, 
but the same ideas would apply to collecting interactive 
feedback from users via a Web interface. We have 
developed such an interactive Web interface for TextRunner 
where people browsing query results can click on assertions 
to highlight them and specify whether they are of interest. 

In order to simplify this and our remaining analyses, we 
first reduce our five-point scale to a binary classification. 
We define ratings of 4 or 5 to be interesting, define ratings 
of 1 or 2 to be not interesting, and ignore ratings of 3. This 
discretization creates a nearly even split of our collected 
human labels, which we then use as positive and negative 
training examples for a relevance feedback classifier.  

We make the output of our specific, distinguishing, and 
basic filters available as features to this classifier. We also 
provide the same features that are used by the basic 
classifier. Because we are interested in a generally 
applicable classifier of interesting assertions, we evaluate 
trained relevance feedback classifiers using ten-fold 
cross-validation such that we only test on the assertions 
from query terms not used to train the filter. This allows us 
to estimate performance on queries for which the system has 
not been trained, as we would expect improved performance 
on any queries for which the system has been trained. 

Several classifiers from the WEKA toolkit [Witten and 
Frank, 2005] all had comparable precision at k values, 
averaging over ten-fold cross-validation, from k=1 to k=30. 
Decision Tree [Quinlan, 1993] was slightly better than the 
rest with an average precision at 67.9%. The precision at k 

Figure 4. Our trained filters led to significantly higher mean 
average precisions for whether top assertions were interesting. 

Relevance Feedback (67.9%) was the best (p ≈ .005). Basic 
(65.4%) was second best (p < .0001). Specific (59.5%) and 
distinguishing (60.3%) were also better (p < .0001) than 

Assertion Frequency (the results without any filtering), which 
had the lowest mean average precision at 41.9%. 
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measure illustrates the percentage of the first k results that 
are interesting, and is an appropriate and important measure 
because it corresponds to the quality of the top results.  

4.4 Analysis 
Figure 4 plots the precision at k for the relevance feedback 
decision tree classifier versus our specific, distinguishing, 
and basic filters as well as against AssertionFrequency. To 
test for difference between these curves, we conduct an 
analysis of variance for the precision at each plotted point, 
treating condition and k as fixed effects. The omnibus test 
reveals a significant main effect of condition (F(4, 4) = 285, 
p < .0001), leading us to investigate pairwise differences. 
We use Tukey’s HSD procedure to account for increased 
Type I error in unplanned comparisons. This shows that 
relevance feedback yields significantly more interesting 
assertions than specific (F(1,144) = 95.4, p < .0001), 
distinguishing (F(1,144) = 78.6, p < .0001), basic (F(1,144) 
= 8, p ≈ .005) and AssertionFrequency (F(1,144)=926, 
p<.0001).  

The largest differences in Figure 4 are between our filter-
based approaches and TextRunner’s original use of 
AssertionFrequency, indicating the advantage of filtering. 
The classifier filters trained with user-contributed 
knowledge (relevance feedback and basic) performed 
significantly better than all other approaches, indicating the 
utility of user-contributed knowledge for this task. Our 
relevance feedback classifier achieves a precision at 30 of 
64.1% and a mean average precision of 67.9%. This is 
comparable to human level performance, as we measured 
inter-annotator agreement in our label set to be 
approximately 70%.   

5 Conclusions 
Extraction engines such as TextRunner are a promising 
avenue towards improving Web search and generating large 
knowledge bases. However, such systems are currently 
hamstrung by the fact that they often return uninformative 
results that are vague or uninteresting. Web extraction 
systems are particularly prone to this problem because of the 
general methods they use to extract entities and 
relationships [Banko and Etzioni, 2008]. This paper has 
developed filters based on user contributions that allow 
TextRunner to better focus on assertions that are interesting. 
These filters raised the average percentage of interesting 
results on a sample of queries from 41.6% to 64.1%. 

Leveraging user-contributed knowledge to improve the 
quality of Open IE presents an interesting synergy. Open IE 
draws knowledge from the Web, and at the same time it 
contributes back to the Web in terms of smarter searching 
and question answering abilities and the ability to empower 
better AI applications via a large knowledge base. Our 
filtering uses knowledge from Wikipedia to enable higher 
quality Open IE, which in turn could lead to good 
contributions back to Wikipedia via projects such as those 

that use IE on Wikipedia article text to populate Wikipedia 
Infoboxes [Hoffmann et al., 2009]. 

One avenue of future work is to incorporate research on 
entity ranking [Zaragoza et al., 2007], which might provide 
valuable additional input in areas such as entity generality.  
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Abstract
Bilingual dictionaries are usually constructed from
large parallel corpora, but since these corpora are
available only for selected text domains and lan-
guage pairs, the potential of other resources is being
explored as well.
In this paper, we want to further pursue the idea
of using Wikipedia, a large-scale multilingual
encyclopedia, as a corpus for bilingual terminology
extraction. We propose a method that extracts
term-translations pairs from different types of
Wikipedia link information and lets an SVM
classifier trained on the features of manually
labeled training data determine the correctness of
unseen term-translation pairs. In an experiment,
we showed that our proposed method is effective
for constructing bilingual dictionaries.

1 Introduction
Bilingual dictionaries hold great potential for emerging re-
search areas such as machine translation and human-aided
translation as well as cross-language information retrieval.
Unfortunately, the manual construction of bilingual dictio-
naries is inefficient, since linguistic knowledge is expensive
and new or domain-specific terminology is difficult to cover.
Therefore, a lot of research has been conducted on the
automatic extraction of bilingual dictionaries. In particular,
the extraction from large parallel corpora [van der Eijk, 1993]
has achieved impressive results. However, parallel corpora
are available for only selected text domains and language
pairs, since their construction is time-consuming and labor-
intensive.

To solve that problem, we propose the extraction of bilin-
gual terminology from Wikipedia or other large multilingual
encyclopedias, in order to complement bilingual dictionaries
with accurate term-translation pairs for languages and text
domains where no parallel corpora exist. Wikipedia is a very
promising resource as the continuously growing encyclopedia
already contains more than 10 million articles in over 250
languages, has a dense link structures and covers a wide
variety of topics.

In Wikipedia, there are many links between articles in
different languages. If we regard the titles of Wikipedia ar-

ticles as terminology, it is easy to extract translation relations
by analyzing the interlanguage links, assuming that if two
articles are connected by an interlanguage link, their titles are
translations of each other. In addition, we can analyze redirect
page and anchor text information to extend the number of
term-translation pairs in the dictionary while maintaining a
relatively high accuracy.

Since not all redirect page and anchor text information is
suitable to extend our dictionary, we manually labeled a small
number of extracted term-translation pairs and trained an
SVM (Support Vector Machine) classifier on the characteris-
tics (features) of that data. After that, the classifier can predict
the correctness of unseen term-translation pairs with high
accuracy. In an experiment, we proved the advantages of our
new approach compared to previous methods on extracting
bilingual terminology from Wikipedia.

2 Related Work
The traditional way of constructing bilingual dictionaries is
by human effort. For the language pair German and English,
one of the most popular freely accessible dictionaries is the
online dictionary BEOLINGUS (http://dict.tu-chemnitz.org)
from Chemnitz University of Technology, which contains
more than 900,000 entries. The main disadvantage of manu-
ally created dictionaries is that new terms as well as domain-
specific terms are difficult to cover.

In order to reduce the burden of manual dictionary
construction, a lot of research has been conducted on the
construction of bilingual dictionaries from parallel corpora,
which are bilingual text collections consisting of the same
text in two or more different languages. For German-English
dictionary extraction, the largest available parallel corpus
is the EUROPARL corpus [Koehn, 2005] consisting of
documents from the European Parliament. Besides, other
German-English corpora such as the OPUS collection of
parallel texts [Tiedemann and Nygaard, 2004] (documents
of the European Medicines Agency, open source software
documentations, etc.) are also available. One of the main
issues of bilingual dictionary extraction from parallel corpora
is that sufficiently large parallel corpora are not available for
all text domains, even though attempts have been made to
construct parallel corpora automatically [Resnik and Smith,
2003].
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Recently, several attempts have been made to use other
types of corpora, such as Wikipedia, for automatic bilingual
dictionary construction. For instance, [Adafre and de Rijke,
2006] have created a bilingual dictionary from Wikipedia
in order to construct a parallel corpus from Wikipedia ar-
ticles. [Bouma et al., 2006] have extracted bilingual ter-
minology in a multilingual question answering system and
[Schönhofen et al., 2007] for cross-language information
retrieval. [Ferrández et al., 2007] have used Wikipedia
to translate and disambiguate named entities. In addition,
[Erdmann et al., 2008] used not only interlanguage links for
extracting bilingual terminology, but also analyzed redirect
page and anchor text information to increase the number of
extracted translations.

3 Proposed Method
Our proposed method extracts term-translation pairs from
Wikipedia. In the following, we will describe how we extract
and filter this bilingual terminology.

3.1 Wikipedia Link Structure
In order to create a high accuracy and high coverage dic-
tionary, we have analyzed several types of link information.
Prior to describing our method, we explain the used link
information.

Interlanguage Links
An interlanguage link in Wikipedia is a link between two
articles in different languages. In most cases, the titles of two
articles connected by an interlanguage link are translations
of each other. The accuracy of interlanguage links is very
high, although sometimes mistakes occur. For instance, if an
article in one of the languages does not exist, a similar article
is sometimes linked instead.

Redirect Pages
Redirect pages in Wikipedia are pages that link to a differ-
ent article (target page) in order to facilitate the access to
Wikipedia content. Redirect page titles are usually strongly
related to the title of the target page. They often indicate
synonym expressions, but can also be e.g. more general or
more specific terms for which no separate Wikipedia articles
exist.

Anchor Texts
An anchor text, also called link text, is the text part of a link
that is presented to the user in the browser. Anchor texts
are usually strongly related to the title of the linked page.
They can be synonym expressions of the linked article, but
are sometimes changed to fit in the sentence structure of the
linking article.

Forward/Backward Links
For all the above mentioned types of links, we can distinguish
the link direction. As shown in Figure 1, a forward link is an
outgoing link and a backward link is an incoming link of a
page. Both forward and backward links are useful informa-
tion for extracting translation candidates. Furthermore, the
number of backward links is a valuable factor for estimating
the reliability of a redirect page or anchor text, as we will
describe later.

Figure 1: Forward and Backward Links

3.2 Extraction of Translation Candidates
We use the method for extracting bilingual terminology from
interlanguage link, redirect page and anchor text informa-
tion described by [Erdmann et al., 2008]. At first, we
create a baseline dictionary from Wikipedia interlanguage
links. Then, assuming that redirect page titles are often
synonym expressions of the target page title, we add new
term-translation pairs to our dictionary in which we replace
the target page title with a redirect page title. In the same
way, we assume that anchor texts of Wikipedia pages can
be synonym expressions of the page title, thus create term-
translation pairs by replacing the page title by an anchor text.

3.3 Filtering Incorrect Term-Translation Pairs
Unfortunately, not all redirect page titles and anchor texts
are synonym expressions of a target page title, thus not all
term-translation pairs are correct. [Erdmann et al., 2008] thus
calculated a score for each term-translation pair based on the
number of backward links of a redirect page or anchor text.
After that, they manually labeled some of the extracted term-
translation pairs in order to determine a threshold for filtering
out unsuitable term-translation pairs based on this score.

However, in this paper we propose the usage of an SVM
classifier for estimating the correctness of term-translation
pairs automatically. The advantage of using a classifier is
that we can easily add other features to identify and remove
incorrect term-translation pairs more accurately. In total,
our proposed method uses 12 different features from source
and target language information which we will list up in the
following, assuming a term-translation pair 〈s, t〉with s being
a term in the source language and t being a term in the target
language.

Feature 1
(Whether s and t are connected by an interlanguage link)
Term-translation pairs that are directly derived from inter-
language links are more reliable than pairs extracted using
redirect page or anchor text information.

Feature 2
(Whether t is redirect page title AND anchor text)
Terms that exist both as a redirect page title and an anchor
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text are more reliable than terms that are only either redirect
page title or anchor text.

Feature 3
(Number of backward links of t as a redirect page)
A large number of backward links of a redirect page indicates
a high reliability of the redirect page title being a synonym
of the target page title. We adjusted the number of backward
links by taking the logarithm.

Feature 4
(Relative no. of backward links of t as a redirect page)
The relative number of backward links of a redirect page
also indicates the reliability of the redirect page title being
a synonym of the target page title. It is calculated by dividing
the number of backward links of the redirect page by the
number of backward links of the target page. This feature
is calculated in the same way as the redirect page score
described in [Erdmann et al., 2008].

Feature 5
(Number of backward links of t as an anchor text)
A large number of backward links of a page with a certain
anchor text indicates a high reliability of that anchor being
a synonym of the page title. We adjusted the number of
backward links by taking the logarithm.

Feature 6
(Relative no. of backward links of t as an anchor text)
The relative number of backward links of a page with a
certain anchor text also indicates the reliability of that anchor
text being a synonym of the page title. It is calculated by
dividing the number of backward links having the specified
anchor text by the number of backward links with any anchor
text. This feature is calculated in the same way as the anchor
text score described in [Erdmann et al., 2008].

Feature 7
(Whether s OR t is derived from redirect page / anchor text)
Redirect pages and anchor texts in the source language can be
more/less reliable than those in the target language.

Feature 8
(Whether s is redirect page AND anchor text)
Refer to the description of Feature 2.

Feature 9
(Number of backward links of s as a redirect page)
Refer to the description of Feature 3.

Feature 10
(Relative no. of backward links of s as a redirect page)
Refer to the description of Feature 4.

Feature 11
(Number of backward links of s as an anchor text)
Refer to the description of Feature 5.

Feature 12
(Relative no. of backward links of s as an anchor text)
Refer to the description of Feature 6.

We used the software LIBSVM [Chang and Lin, 2001] to
train the classifier, since it comes with scripts that automate
e.g. normalization of the feature values and optimization of
the C and γ parameters. After training the classifier on a
small amount of training data including examples of both
correct and incorrect term-translation pairs, the classifier can
estimate the correctness of unseen term-translation pairs with
high accuracy.

4 Evaluation
[Erdmann et al., 2008] have already proved that a bilingual
dictionary constructed from Wikipedia can outperform dictio-
naries constructed from a large parallel corpus and as well as
manually created dictionaries. Therefore, in this experiment,
we focus on showing the advantage of our proposed method,
which is using an SVM classifier to determine the correctness
of the term-translation pairs, compared to manually setting a
threshold as proposed by Erdmann et al. In the following, we
will describe the experiment and discuss its results.

4.1 Training/Test Set Construction
We downloaded the German and English Wikipedia dump
data from January 2008 containing 753,197 German and
2,393,591 English articles. From that data, we extracted all
interlanguage links, anchor texts and redirect pages as well as
the number of backward links for each page.

We randomly extracted term-translation pairs from
German-English interlanguage links. On average, more
than 95% of all interlanguage links in Wikipedia connect
articles on proper nouns such as names of persons, places
and products. However, since we are interested mainly in
the translation of common nouns, we automatically filtered
out proper nouns by analyzing the capitalization of English
anchor texts (proper nouns always start with a capital letter
whereas common nouns usually start with a small letter). In
total, we extracted 300 term-translation pairs, of which a few
examples are shown in Table 1.

In the next step, for each of the term-translation pairs
extracted from interlanguage links, we extracted additional
term-translation pairs from redirect page and anchor text
information in both the German and the English Wikipedia.
Some examples are shown in Table 2. The total number
of term-translation pairs thus increased to 6266 pairs (on
average 20.89 pairs per interlanguage link).

All term-translation pairs were manually categorized into
“correct” and “incorrect”. Of course, this categorization is
not always clear-cut. The categorization has to be adopted to
the type of application for which the dictionary is intended to
be used. Apart from that, due to staff shortage the evaluation
was done by only one judge. However, we tried to categorize
the term-translation pairs as consistently as possible.

The labeling of all 6266 term-translation pairs took only a
few hours, since most pairs could be labeled easily. Only a
few pairs required the judge to consult additional information
such as the respective Wikipedia article or a monolingual
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Table 1: Term-Translation Pairs From ILL
German English
Zweikeimblättrige dicotyledon
Schneeschuh snowshoe
Chylothorax chylothorax
Ultimatum ultimatum
Thema-Rhema-Gliederung topic-comment
Individualismus individualism
Diapsida diapsid
Ausgangssperre curfew
Ladeluftkühler intercooler
Epische Vorausdeutung foreshadowing
. . . . . .

Table 2: Additional Term-Translation Pairs
German English
Zweikeimblättrige dicotyledon
Zweikeimblättrige dicotyledonous
Zweikeimblättrige broadleaf
Zweikeimblättrige liliopsida
Zweikeimblättrige magnoliopsida
. . . . . .
Zweikeimblättrige Pflanzen dicotyledon
Dikotyledonen dicotyledon
Dicotyledoneae dicotyledon
Dicotyledonen dicotyledon
Zweikeimblättriger dicotyledon
. . . . . .

dictionary prior to making a decision. From the manually
labeled data, we formed training and test sets to conduct
cross-evaluation experiments.

4.2 Term-Translation Pair Distribution
During manual evaluation, we collected information on the
distribution of term-translation pairs, as shown in Table
3. From the term-translation pairs extracted directly from
interlanguage links, 92.3% were correct. By adding term-
translation pairs from redirect pages and anchor texts, the
percentage of correct pairs decreased drastically to only
23.1%. In the following, we will analyze the different types
of incorrect term-translation pairs.

In 5.7% of term-translation pairs derived from
interlanguage links and 61.9% of all pairs in total,
one of the terms had a more specific or more general
meaning than the other. For instance, the German term
“Silikonarmband” (silicone wristband) was incorrectly
translated as “wristband”. These kinds of incorrect
translations were extracted from interlanguage links, redirect
pages as well as from anchor texts. One of the reasons is that
in cases where a required article does not exist, sometimes an
article with more general or more specific content is linked.

In 0.7% of term-translation pairs derived from interlan-
guage links and 7.9% of all pairs in total, one of the terms
was a noun whereas the other term was a verb or adjective.
For instance, the German term “Verdunstung” (evaporation)
was incorrectly translated as “vaporized”. These kinds of

Table 3: Term-Translation Pair Distribution
Category ILL only All pairs
Correct 277 (92.3%) 1450 (23.1%)
Noun / Other than noun 2 ( 0.7%) 494 ( 7.9%)
Action / Actor 2 ( 0.7%) 177 ( 2.8%)
General / Specific 17 ( 5.7%) 3876 (61.9%)
Other 2 ( 0.7%) 269 ( 4.3%)
All categories 300 (100%) 6266 (100%)

translation mistakes were often derived from anchor texts,
since anchor texts have to be adapted to fit into the sentence
structure of the linking article.

In 0.7% of term-translation pairs derived from interlan-
guage links and 2.8% of all pairs in total, one of the terms
described an action whereas the other term described an actor.
For instance, the German term “Ehebruch” (adultery) was
incorrectly translated as “adulterer”.

Other incorrect term-translation candidates were caused by
e.g. rarely used terms or misspellings. They were often
extracted from redirect page titles, since redirect pages are
intended to facilitate access to Wikipedia content by forward-
ing all article requests to the actual article. For instance,
the German term “Aspic” is usually spelled “Aspik”, and the
English term “tounge twister” is a common misspelling of
“tongue twister”.

Overall, incorrect translations were extracted from redirect
page and anchor text information much more often than from
interlanguage links.

4.3 Methods
We compared the following four methods in our experiment:

• BEOLINGUS: Baseline method that assumes a term-
translation pair is correct if it can be found in the
BEOLINGUS dictionary.

• ILL: Baseline method that assumes that all term-trans-
lation pairs directly extracted from interlanguage links
are correct.

• SVM 2 Features: Reproduces the results of the method
proposed in [Erdmann et al., 2008] by creating a clas-
sifier based on only the 2 features used in that work.
We assume that the performance of both methods is
comparable, thus we can avoid the time-consuming
process of manual threshold determination.

• SVM 12 Features: Our proposed method which creates
a classifier based on 12 different features from informa-
tion in source and target language.

4.4 Comparison Criteria
We calculated the two standard criteria precision and recall to
compare the accuracy and coverage of the different methods.

Precision measures the accuracy by calculating how many
of the extracted term-translation pairs are correct. Recall
measures the coverage by calculating how many correct term-
translation pairs were extracted by a method compared to
the total number of existing correct term-translation pairs.
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Table 4: Experimental Results
Method Precision Recall F10-Measure F1-Measure F0.1-Measure

BEOLINGUS 1.000 0.126 0.137 0.224 0.613
ILL 0.923 0.191 0.206 0.317 0.685
SVM 2 0.841 0.303 0.322 0.446 0.725
SVM 12 0.772 0.350 0.369 0.482 0.696

It is not trivial to estimate the total number of correct term-
translation pairs, since it cannot be calculated automatically.
In our experiment, we decided to use a relative recall,
assuming that the number of correct term-translation pairs
found in Wikipedia is the total number of existing correct
term-translation pairs.

The relative recall is sufficient to compare the different
methods with each other. Relative recalls are often used
where the absolute recall is difficult to estimate, e.g. for
search engine evaluation [Goncalves et al., 1998].

We further evaluated the balance of precision and recall by
using the Fα-measure which is defined as:

Fα =
(1 + α) · (precision · recall)

α · precision + recall
.

In order to reflect the different requirements of applications
using the bilingual dictionary, we calculated the F10-measure
(weighs recall ten times as much as precision), the F1-
measure (weighs precision and recall equally), and the F0.1-
measure (weighs precision ten times as much as recall).

4.5 Experimental Results
In the following, we will present and discuss the results of our
experiment shown in Table 4.

Precision
The BEOLINGUS dictionary not surprisingly achieved the
highest possible precision, since it has been constructed
manually. The baseline dictionary that is using only inter-
language links (ILL) also achieved a high precision. Our
proposed method (SVM 12 Features) as well as the method
that imitates the approach described in [Erdmann et al., 2008]
(SVM 2 Features) achieved a lower precision, since term-
translation pairs extracted from redirect page and anchor text
information are less accurate.

Recall
Our proposed method (SVM 12 Features) achieved a much
higher recall than the reproduction of the method of Erdmann
et al. (SVM 2 Features). The ILL method achieves an even
lower recall, since the number of term-translation pairs that
can be extracted by the ILL method is very limited. The
BEOLINGUS dictionary achieved the lowest recall, because
it covers almost none of the correct term-translation pairs that
can be extracted from Wikipedia.

F-Measures
Our proposed method achieved a significantly higher f10-
measure and f1-measure than the baseline methods and the
SVM 2 Features method. Thus, our proposed method is very
suitable for creating dictionaries where the recall is more

important than the precision or where precision and recall
are equally important, such as in dictionaries used in cross-
language information retrieval.

The highest f0.1-measure was achieved by the SVM 2
Features method. From that result, we can understand
that for creating dictionaries where the precision is more
important than the recall, e.g. in dictionaries used for
machine translation, feature quality is more important than
feature quantity, thus only the most reliable features should
be used to train the classifier.

4.6 Statistical Significance
We applied the McNemar’s test in order to estimate the signif-
icance of the improvement by the SVM 12 Features method
compared to the results of the SVM 2 Features method.
Both two-tail-based and one-tail-based P values fell below
0.000001, thus the difference between both methods can be
considered statistically relevant by conventional criteria.

4.7 Training/Test Time
Training time is affected by the amount of training data and
the number of features. For the largest amount of training
data and the largest number of features, the training time
took 7.5 hours on a standard PC. However, since the training
has to be conducted just once, only the testing time (time to
determine the correctness of unknown term-translation pairs)
is important. In our experiment, the average test time took
less than one second for even large amounts of test data.

5 Conclusion and Future Work
In this paper, we presented our approach of bilingual dictio-
nary construction from Wikipedia, in order to help satisfy the
demand of bilingual dictionaries in research areas such as
machine translation or cross-language information retrieval.
As opposed to previous research, we used an SVM clas-
sifier to determine the correctness of term-translation pairs
automatically rather than manually determining a threshold.
This enabled us to take into account not only the number
of backward links but various other features of a term-
translation pair.

In order to prove the advantages of our proposed method,
we conducted an experiment on a randomly extracted and
manually labeled set of mostly domain-specific term-trans-
lation pairs from Wikipedia. The experiment proved that our
SVM classifier trained on 12 different features achieved a
significantly higher recall than a method where a threshold is
set based on only 2 different features, and is thus very suitable
for creating dictionaries where the recall is at least as impor-
tant as the precision. The experiment also showed that many
of the extracted term-translation pairs are not covered in even
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comprehensive manually created dictionaries. Furthermore,
since Wikipedia is growing continuously, both accuracy and
coverage of our dictionary will become even better in near
future.

We believe that it is promising to combine our dictionary
with manually constructed dictionaries such as the BEOLIN-
GUS dictionary in order to enhance the coverage for common
terms, especially for word groups other than nouns. In the
future, we want to further improve our method, e.g. by
using additional features or by experimenting with different
feature combinations. Another goal is to apply dictionaries
constructed from Wikipedia to applications such as machine
learning or cross-language information retrieval.
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Abstract
This paper investigates the “named-entity disam-
biguation” task on the Web—identifying the refer-
ent of a string, found on an arbitrary Web page. The
GROUNDER system, introduced in this paper, ad-
dresses two challenges not considered by previous
work: how to utilize a priori information (e.g., Bill
Clinton is more prominent on the Web than Clin-
ton County) to improve disambiguation, and how
to compose this prior information with contextual
evidence.
GROUNDER addresses both challenges by leverag-
ing the user-contributed knowledge in Wikipedia
and providing a novel formulation of the task. On a
sample of strings drawn from the Web, GROUNDER
achieves precision of 1.0 at recall 0.34, and preci-
sion 0.90 at recall 0.60.

1 Introduction and Motivation
The problem of determining the referent of a word or phrase
has its roots in the philosophy of language where Gottlob
Frege analyzed the distinction between the meaning and ref-
erent of the phrase “the morning star”, and Hilary Putnam
considered whether “water” refers to the same substance in
a hypothetical “twin earth” where water has the same func-
tional role but a different chemical composition [Putnam,
1975]. In the AI and database literatures, more pragmatic
versions of the problem have been explored under the head-
ings entity deduplication, reference reconciliation, and more
[Yates and Etzioni, 2007; Singla and Domingos, 2005]. We
are interested in the problem as it manifests on arbitrary Web
text, which means that we cannot restrict the entities to par-
ticular types as in [Singla and Domingos, 2005] for example.
In contrast with [Yates and Etzioni, 2007], we leverage the
user-contributed knowledge in Wikipedia.

Thus, this paper investigates the “named-entity disam-
biguation” task on the Web—identifying the referent of a
string, found on an arbitrary Web page, leveraging the set of
entities described by Wikipedia articles. Seminal work by
Bunescu and Pasca [2006] and Cucerzan [2007] introduced
this task. However, their work suffers from a key limitation:
it does not factor a priori information into the disambiguation
decision.

Not all entities are “created equal”—some are a priori
more likely to serve as the referents of textual strings. Con-
sider, for example, the string “Clinton”—it could potentially
refer to Bill, Hillary, or Roger Clinton or even to Clinton
County. However, a priori the string is much more likely to
refer to Bill or Hillary Clinton than to Clinton County given
Bill and Hillary’s prominence on the Web. Of course, we
can’t ignore the possibility that, in some contexts, the string
does refer to Clinton County. Contextual evidence might
cause us to map the string “Clinton” to Clinton County, but
it would have to be fairly strong evidence. Thus, we need a
means of quantifying a priori information, and a method for
combining it with contextual evidence to yield disambigua-
tion decisions.

This paper reports on the GROUNDER system, the first
named-entity disambiguation system that composes a priori
prominence information with contextual evidence to yield su-
perior disambiguation decisions. Our contributions are as fol-
lows:
• We introduce a novel formulation of the task, and high-

light the value of a prior over entities for this task.
• We present an overview of the GROUNDER system,

which operationalizes this formulation into a work-
ing system that draws its prior automatically from
Wikipedia.

• We report on a set of experiments that demonstrate the
value of using prior information in concert with contex-
tual evidence. GROUNDER achieves a precision of 90%
at a recall of 60%.

The remainder of the paper is organized as follows. Sec-
tion 2 describes closely related work. Section 3 provides an
overview of the GROUNDER system. Section 4 describes our
experimental results, and Section 5 concludes with a discus-
sion of future work.

2 Previous Work
The problem of named entity disambiguation has a long his-
tory in the database community, where the task is presented
as a classification problem: given a vector of similarities be-
tween two records in a database, output whether they refer
to the same entity or not [Fellegi and Sunter, 1969]. Work
that is closer to ours leverages a graph of known relation-
ships between entities to find the entity that best matches a
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Wikipedia Entities

Strings

“Bill Clinton”“Clinton”“Hillary Clinton”“Roger Clinton”

Bill ClintonHillary Rodham Clinton

Figure 1: A possible relationship between Wikipedia entities (top)
and a set of strings (bottom). Mapping ambiguous strings such as
“Clinton” to the correct entity pose a harder problem than unam-
biguous strings such as “Hillary Clinton”.

given reference [Bhattacharya and Getoor, 2006a]. Our work
is similar in that it relies on the Wikipedia graph of entities to
obtain a measure of entity prominence.

There has also been work on providing a probabilistic
framework for named entity disambiguation in text [Li et
al., 2004; Bhattacharya and Getoor, 2006b]. However, these
frameworks make assumptions about the types of named en-
tities and cannot be applied directly to the problem of named
entity disambiguation on the Web.

The work presented in this paper builds on the ideas
described in papers by Bunescu and Pasca [2006] and by
Cucerzan [2007], both of which attempt to disambiguate
named entities by mapping them to Wikipedia articles. Each
of these papers make use of the fact that the context sur-
rounding an ambiguous string gives useful evidence for dis-
ambiguating it. Given an ambiguous string s and its context,
their systems find all Wikipedia articles that can be referred to
as s, and “ground” s to the article whose content best overlaps
with the context of s.

Bunescu and Pasca [2006] measure this overlap using tf-
idf cosine similarity. Bunescu and Pasca found that the text
of Wikipedia articles is often not enough to disambiguate an
ambiguous string, despite its sense being clear from the con-
text. To address this issue, they use a supervised learning
technique to enrich a given Wikipedia article’s term vector
with words from articles in the same category. They evalu-
ate their system on Wikipedia articles and obtain accuracies
ranging from 77.2% to 84.8%.

Cucerzan [2007] takes a similar approach, but uses context
vectors consisting of key words and short phrases extracted
from Wikipedia. Cucerzan’s system also attempts to disam-
biguate all named entities in a single context simultaneously,
adding the constraint that the target Wikipedia articles should
be from the same categories. He evaluated his system on
Wikipedia articles and a set of 100 news articles, obtaining
accuracies of 88.3% and 91.4%, respectively.

Our work builds on these two approaches and follows their
lead on using Wikipedia as a database of candidate entities.
However, these previous systems focus only on contextual
evidence for disambiguation and fail to include an explicit
notion of prior information about the relationship between a
string and its referent entities. We show that for the named
entity disambiguation problem, prior information about entity
prominence turns out to be very useful. This prior informa-

tion can be used in conjunction with contextual information
and we show that doing so leads to better performance than
either component in isolation.

Another important difference between this work and the
previous two is that we evaluate our system on domain-
independent Web text, as opposed to only news and
Wikipedia articles. We obtained performance on arbitrary
Web text that is consistent with the performance on the previ-
ous systems.

3 The GROUNDER System
This section introduces the GROUNDER system, which uses a
novel formulation of the named entity disambiguation prob-
lem. The key insight used in GROUNDER is that a priori
information about the ambiguity of a string is valuable for
named entity disambiguation. We call this type of informa-
tion a prominence prior over strings and entities. We can
think of a prominence prior as representing the GROUNDER
system’s real-world knowledge about the ambiguity of a
string s: what are the entities s could possibly refer to and
with what probability?

In order to leverage this type of prior information, we are
faced with two challenges. The first challenge is finding a
source of information to use as our prominence prior. Our so-
lution to this problem relies on the fact that Wikipedia’s net-
work structure naturally encodes a measure of entity promi-
nence: highly linked articles tend to be about more prominent
entities than articles with fewer incoming links. In addition
to this, Wikipedia’s article titles and redirect pages provide
a large amount of information about the entities a string can
refer to. We combine these two sources of information to
compute a prominence prior, which lets us answer questions
about the likely referents of a string independent of its con-
text.

Given a source of information for our prominence prior, the
second challenge we face is the question of how to combine
it with contextual evidence. We solve this problem by com-
bining contextual and prior information via Bayes’ theorem.

In the following sections, we describe in detail
GROUNDER’s novel model of named entity ambiguity,
our source of contextual evidence for disambiguation, and
the Wikipedia-based prominence prior outlined above.

3.1 A Novel Model for Named Entity
Disambiguation

Suppose that we observe a named entity string s in a docu-
ment D. Given a database E of candidate entities, we define
the named entity disambiguation problem as the task of maxi-
mizing P (s → e∗|D), i.e. finding the entity e ∈ E that s most
likely refers to in the context given by D. We can express this
as the problem of maximizing the probability P (s → e|D)
over all entities e ∈ E, where the notation s → e represents
the event that s refers to e. Rewriting this using Bayes’ the-
orem, we can restate named entity disambiguation as finding
the entity e∗ in the following optimization problem:

e∗ = arg max
e∈E

P (D|s → e)P (s → e). (1)

We make the simplifying assumption that the normalizing
constant P (D) in Bayes’ theorem is uniform in order to
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PROBDISAMBIG(s,D, τ):

1. e∗ = arg max
e∈E

P (D|s → e) P (s → e)

2. if P (s → e∗|D) > τ , return e∗

3. else return NoEntity

Figure 2: Pseudocode for a named entity disambiguation al-
gorithm based on the model defined in Section 3.1. The in-
puts are: s, a named entity string; D, the document contain-
ing s; and τ , the minimum value that the posterior probability
P (s → e|D) must obtain for e∗ to be returned.

threshold the value of P (s → e|D) to control precision and
recall.

The two factors on the right hand side of Equation 1 cor-
respond to the two sources of information that we include
in GROUNDER. The first factor P (D|s → e) represents the
likelihood of seeing the document D given that we know it
contains a reference to e. We can interpret the role of this
in the optimization as the source of contextual evidence that
the document D gives us. The second factor P (s → e) is
the prior probability of the string s referring to e. This is the
prominence prior that was introduced in the previous section
and can be thought of as a measure of the ambiguity of s.

This view of named entity disambiguation has three clear
benefits. First, it corresponds to our intuition about how hu-
man readers disambiguate a string s. If we believe that s
refers to e with high probability, then it would take a lot of
contextual evidence to convince us otherwise. On the other
hand, if s is ambiguous, then the role of context becomes
more important for our decision.

The second benefit of GROUNDER’s model is that it gives
us a measure of the uncertainty of the most likely entity e∗

in Equation 1. This is useful for controlling the precision
and recall of a system that uses the model. For example, we
could choose a threshold parameter τ ∈ [0, 1] and instruct
the computer to ground only the strings s such that P (s →
e∗|D) > τ .

Lastly, a third benefit of our model is that it provides a
very general framework for incorporating different types of
information into the disambiguation process. By changing
the details of the contextual and prior model components, we
can account for new types of evidence. In this sense, our
model describes a family of algorithms for named entity dis-
ambiguation. The pseudocode for an algorithm based on this
model is shown in Figure 2.

3.2 GROUNDER Implementation
In the following sections, we describe our implementation of
the GROUNDER system, which consists of three parts: the
entity database E, the context model component P (D|s →
e), and the prominence prior model component P (s → e).

Wikipedia as an Entity Database
Following the work of Bunescu and Pasca [2006] and
Cucerzan [2007], we can treat Wikipedia as an entity

database, where each article corresponds to an entity.
Wikipedia is well-suited to act as an entity database for
named entity disambiguation on the Web: it is domain-
independent and contains millions of articles, so many of the
named entities mentioned on the Web have a Wikipedia arti-
cle. Let E represent the set of all entities in Wikipedia. De-
fine Article(e) to be the text of the article on entity e ∈ E.
We use a basic filter to remove articles that do not describe
entities (e.g., list and category pages).

Cosine Similarity Context Model
Our implementation of the context model component
P (D|s → e) is based on the assumption that if D contains a
reference to e, then the words used in D will tend to overlap
with the words used in the Wikipedia article Article(e). To
measure this overlap, we treat D and Article(e) as tf-idf vec-
tors and compute the cosine similarity of D and Article(e):

P (D|s → e) = cos(D,Article(e)). (2)
We computed the idf scores for each term using a Lucene
index of Wikipedia as a corpus (see the following section for
more information), which defines the idf score of a term t as

idf(t) = 1 + log
(

N + 1
nt

)
,

where nt is the number of Wikipedia articles containing the
term t and N is the total number of Wikipedia articles. We
note that our model gives a simple measurement of similarity
between the context and the Wikipedia articles and is not a
probability measure. Future work would include extending
this to a full generative model of the context.

In order to compare the behavior of the GROUNDER sys-
tem to one that ignores the prominence prior information, we
define the COSINE-SIM algorithm, which simply returns the
entity s that maximizes the cosine similarity in equation (2):

COSINE-SIM(s,D) = arg max
e∈E

cos(D,Article(e)).

The COSINE-SIM algorithm is similar to the baseline method
used in [Bunescu and Pasca, 2006], which also uses tf-idf
cosine similarity to compare contexts to Wikipedia articles.

Search Engine Prominence Prior
Given a string s and an entity e ∈ E, how do we come up with
a good prior probability P (s → e)? In order to answer this,
consider the following types of evidence that would suggest
that s refers to e:

1. e is known to be referred to as s or a string similar to s

2. e is referred to with high frequency relative to other en-
tities in E that can be referred to as s

The first type of information is a necessary condition for the
event s → e to have a non-zero probability: there must be
some evidence that e can be referred to as s or else P (s → e)
should be 0. The second type of information is based on the
intuition that if e is more prominent than another entity e′,
then P (s → e) should be greater than P (s → e′).

In the GROUNDER system, we use an existing Lucene-
based Wikipedia search engine1 to calculate these two types

1Available at http://www.mediawiki.org/wiki/
Extension:Lucene-search.
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of information. This software is currently being used as
the public search engine for the English-language Wikipedia.
Given a query string s, the search engine returns a list of
scored entities. The search score of an entity e with respect
to the query string is given by

search-score(e, s) = query-match(e, s)

×
(

1 + log
(

1 +
in-deg(e)

α

))
.

The value search-score(e, s) can be interpreted as how likely
it is that s refers to e in the absence of context. The first
factor query-match(e, s) is a non-negative score represent-
ing how well the query s matches the article name of e, the
titles of any redirect pages to e, and the words of the article of
e. The second factor boosts the score of e proportional to the
number of incoming links on Wikipedia, written as in-deg(e).
This can be interpreted as a measure of prominence of e in
the Wikipedia hyperlink network. We used the search en-
gine’s default value of α = 15 in our experiments. We define
search-score(e, s) to be 0 for any e that is not in the set of
articles returned when searching for s. We also normalize the
search scores such that

∑
e′∈E search-score(e′, s) = 1.

In our experiments, we were interested in testing the ef-
fects of this measure of prominence on performance, so we
introduce a smoothed version of the search score given by

search-score(e, s|λ) =
λ

Ns,e
+ (1− λ) · search-score(e, s)

(3)
where Ns,e is the number of entities e such that
search-score(e, s) 6= 0. We can think of this as a mixture
of a uniform score over all candidate entities with the search
score. A value of λ = 0 corresponds to the full search score
and a value of λ = 1 corresponds to a uniform score. We can
now define the prominence prior as

P (s → e|λ) = search-score(e, s|λ).
To compare the GROUNDER system to one that ignores

contextual evidence, we introduce the PRIOR algorithm,
which simply returns the entity that maximizes the prior prob-
ability in (3), given a smoothing parameter λ:

PRIOR(s, λ) = arg max
e∈E

P (s → e|λ).

The GROUNDER Algorithm
Now that we have defined the necessary components of the
model described in Section 3.1, we can combine them and
formally define GROUNDER. The GROUNDER assigns each
entity e ∈ E a score score[e], which is the product of its local
context probability and the prior prominence probability. Fig-
ure 3 shows the pseudocode of GROUNDER, which includes a
threshold parameter τ ∈ [0, 1] to control precision and recall.

4 Experimental Results
This section evaluates GROUNDER’s performance in ground-
ing strings drawn from a “random” set of Web pages. Section
4.1 describes our method of creating a dataset and Section 4.2
uses this dataset to characterize the problem space for ground-
ing arbitrary proper nouns to Wikipedia concepts. Sections
4.3 and 4.4 present our experimental results.

GROUNDER(s,D, λ, τ):

1. for e ∈ E:

score[e] = cos(D,Article(e)) · search-score(e, s|λ)

3. e∗ = arg max
e∈E

score[e]

4. if score[e] > τ return e∗

5. else return NoEnt

Figure 3: Pseudocode for GROUNDER. The inputs are: s,
a named entity string; D, the document containing s; λ, the
prior smoothing parameter; and τ , the minimum value that
P (s → e|D,λ) must obtain for e∗ to be returned.
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Figure 4: Nearly one third of proper nouns in our dataset have
no Wikipedia page (undefined). Only 19% are the easy cases that
unambiguously refer to a single Wikipedia page.

4.1 Creating a Web-based Dataset
We began with a corpus of approximately 500 million Web
pages of arbitrary topics and genres, including blogs, news
articles, and online stores. Associated with this Web corpus
is a set of tuples extracted by the TEXTRUNNER Open IE
system [Banko et al., 2007; Banko and Etzioni, 2008]. These
tuples are extractions in the form (arg1, pred, arg2) where
arg1, pred, and arg2 are text strings and pred expresses a
relation between arg1 and arg2. (e.g., (“Clinton”, “born in”,
“Hope, AR”)).

We collected a set of 500 tuples and their Web page of ori-
gin, uniformly sampling from a collection that have a proper
noun as arg1 and were manually verified to be correct extrac-
tions. We took the arg1 values as our set of strings s and the
associated Web page as the document D associated with s.

To create a gold standard from this dataset, we manually
identified the entity e ∈ E to which that s refers (and set
e = NoEntity if Wikipedia did not contain an article for
that entity). This gives us a set of 500 triples (s,D, e), where
s is proper noun string occurring on document D, and e is the
entity to which that s actually refers.

4.2 Characterizing the Problem Space
This section addresses the following questions: What propor-
tion of the strings s in our dataset are relatively easy to map
to the correct e? What proportion present a relatively difficult
disambiguation problem? And what proportion are impossi-
ble to map to Wikipedia because a Wikipedia page for s does
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not exist?
To help answer these questions, we distinguish between

four types of s: undefined, unambiguous, ambiguous, and
unknown. Undefined strings are cases where s refers to an
entity that does not have a Wikipedia page. The remaining
three cases are defined in terms of the set of Wikipedia enti-
ties Ents(s) that can be referred to by s. A string s is unam-
biguous if Ents(s) contains exactly one Wikipedia page; it
is ambiguous if |Ents(s)| > 1; and it is unknown if there is
a Wikipedia page e that corresponds to s, but s is not among
the known ways to refer to e, i.e. |Ents(s)| = 0.

We compute Ents(s) from information that Wikipedia
provides about the different ways to which an entity e ∈ E
can be referred, following the methodology of Bunescu and
Pasca [2006] and Cucerzan [2007]. This information comes
from four different sources: article titles, redirect pages, dis-
ambiguation pages, and hyperlink anchor text. For each
e ∈ E, we can define a set Names(e) containing the strings
that are known to refer to e in Wikipedia. We can also define
the set Ents(s) = {e ∈ E : s ∈ Names(e)}, which is the
collection of entities that s can refer to in Wikipedia.

We can represent the relationship between strings and en-
tities as a bipartite graph, where there is an edge between a
string s and an entity e when s ∈ Names(e). Figure 1 shows
a simple example relating a set of entities {Bill Clinton,
Hillary Rodham Clinton} to a set of strings {“Bill
Clinton”, “Hillary Clinton”, “Roger Clinton”, “Clinton”}. In
this toy example, the strings “Bill Clinton” and “Hillary Clin-
ton” are unambiguous, the string “Clinton” is ambiguous, and
the string “Roger Clinton” is undefined.

Let D be the set of 500 triples (s,D, e), where s is the
first argument of the extraction, D is the text of the document
containing the extraction, and e is the entity that s actually
refers to. Figure 4 shows how the string-entity pairs (s, e)
in D are distributed relative to the information in Wikipedia.
32% of the s in our dataset are undefined – no method using
the Ents and Names relations can possibly map them to a
Wikipedia page. Only 19% constitute the easy case of strings
that unambiguously map to a single Wikipedia page, such as
“Hillary Clinton”.

The remainder are the hard cases. To make matters worse,
we found that 31 of the 208 ambiguous s did not include the
correct e in the set of candidate entities Ents(s). Hence, an
entity grounding algorithm that relies on the set of known
references to s on Wikipedia, will fail on these cases as
well as on the unknown cases. We need an entity ground-
ing algorithm that is not limited by the incompleteness of
Names(e). The GROUNDER system avoids this problem by
using a search engine over Wikipedia articles, allowing inex-
act matches on article titles and redirect pages.

4.3 Evaluation of GROUNDER

This section compares the full GROUNDER algorithm with its
two main components—PRIOR and COSINE-SIM. Our ex-
periments utilize recall and precision metrics. To do so, we
created a ranked list of results for each method on the dataset
DW , the subset of D that have a corresponding Wikipedia
article (i.e.such that e ∈ E). ordered by that method’s confi-
dence score. As we vary a threshold τ , we can define recall
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Figure 5: Combining both the search engine score (Prior) and
the Cosine Similarity gives better performance on DW than either
knowledge source alone.

as the percentage of correctly grounded strings s with confi-
dence greater than τ divided by all possible correct ground-
ings inDW . Precision is the percentage of correctly grounded
s divided by the number of results with confidence greater
than τ .

Figure 5 shows a recall-precision curve for COSINE-SIM,
which uses Cosine Similarity exclusively; for PRIOR, which
uses the prominence prior computed from the search engine
scores; and the full GROUNDER system. For this experiment
we set λ = 0.0, which uses the unsmoothed prior.

The COSINE-SIM method suffers from lower recall and
precision than either of the other methods. Combining the
two knowledge sources gives the best result, with a recall-
precision curve that is consistently higher than PRIOR alone.
While cosine similarity is informative, it is unable to make
many fine-grained distinctions. The Prior given by the
Lucene search engine score completely ignores local context
from the page D, but succeeds when s is either unambigu-
ous (e.g. “Hillary Clinton”) or when an ambiguous s refers
to the most prominent Wikipedia page. PRIOR can achieve
precision 1.0 for 31% of our dataset DW . We also evaluated
PRIOR on Cucerzan’s news dataset [2007], which achieved
0.86 precision at 0.68 recall. This suggests that, as in our
dataset, the distribution P (s → e) for a given s tends to be
skewed towards a single entity.

The remaining cases are the hardest ones to disambiguate,
where local context is necessary to find the correct entity. We
examined the “hard cases” in which s does not refer to the
dominant sense of s. In these cases, where PRIOR is always
wrong, we found that COSINE-SIM is able to distinguish the
correct entity about 40% of the time. This performance is
lower than the previously reported results, however this is ex-
pected because the “hard cases” dataset does not include any
unambiguous strings.
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Figure 6: Performance improves as we vary λ from 1.0 to 0.0, at
which point equal weight is given to the search engine score (Prior)
and the Cosine Similarity.

4.4 Parameter Settings to Combine Knowledge
Sources

The key to GROUNDER’s success is the appropriate combi-
nation of the information in its two components: PRIOR and
COSINE-SIM, which is controlled by the smoothing parame-
ter λ. We carried out a sensitivity analysis to demonstrate that
we chose a value for λ that is close to optimal.

In the analysis, we varied the parameter λ by increments
of 0.2. Figure 6 shows the results for λ from 0.0 to 1.0. The
lowest curve in Figure 6 is for λ = 1.0, which is identical to the
COSINE-SIM algorithm. The results improve monotonically
until λ = 0.0 which gives equal weight to both the prior and
contextual evidence scores. Thus, we believe we have a value
of λ that is close to optimal.

5 Conclusions and Future Work
This paper presented our GROUNDER system, which disam-
biguates named entities mentioned in text by mapping them
to Wikipedia pages. A novel feature of the GROUNDER sys-
tem is that it combines local contextual evidence with the
prior probability given by search engine scores. We show
that this method scales well to extractions from arbitrary Web
text. GROUNDER achieves precision of 1.0 at recall 0.34 and
precision 0.90 at recall 0.60.

We did not include any type-specific or genre-specific
knowledge in GROUNDER to ensure that it scales to arbitrary
entities. A future direction of research is to incorporate more
types of evidence into the contextual component of the prob-
abilistic model. For example, including type-specific corefer-
ence resolution to create soft constraints on entity types might
be useful.

Another interesting direction would be to explicitly model
the joint distribution P (s1 → e1, . . . , sn → en|D) of a set of
ambiguous strings s1, . . . , sn on D. One could imagine that
knowledge about the referent entity of si would provide in-
formation about the referent entities of the other strings in D.

Finally, we plan to embed GROUNDER as a module in a va-
riety of textual inference systems including cross-document
reference resolution systems, textual entailment systems.
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Abstract
Wikipedia is a general encyclopedia of unprece-
dented breadth and popularity. However, much of
the Web’s factual information still lies within rela-
tional databases, each focused on a specific topic.
While many database entities are described by cor-
responding Wikipedia pages, in general this corre-
spondence is unknown unless it has been manually
specified. As a result, Web databases cannot lever-
age the relevant rich descriptions and interrelation-
ships captured in Wikipedia, and Wikipedia readers
miss the extensive coverage that a database typi-
cally provides on its specific topic.
In this paper, we present ETOW, a system that
automatically integrates relational databases with
Wikipedia. ETOW uses machine learning tech-
niques to identify the correspondences between
database entities and Wikipedia pages. In experi-
ments with two distinct Web databases, we demon-
strate that ETOW outperforms baseline techniques,
reducing error overall by an average of 19%, and
reducing false positive rate by 50%. In one ex-
periment, ETOW is able to identify approximately
13,000 correct matches at a precision of 0.97. We
also present evidence suggesting that ETOW can
substantially improve the coverage and utility of
both the relational databases and Wikipedia.

1 Introduction
Wikipedia is arguably the most comprehensive and frequently
used knowledge base in existence. The Web-based encyclo-
pedia contains user-contributed entries on a multitude of top-
ics, providing detailed descriptions of millions of distinct en-
tities and their interrelationships.

Nonetheless, it remains the case that much information on
the Web resides in relational databases focused on a particular
domain. For almost any conceivable topic, the Web contains a
corresponding online database; examples include the USDA
Nutrient Database for nutrition, the Internet Movie Database
for films, and numerous similar databases focused on moun-
tains, music, diseases, castles, digital cameras, and so on. For
the most part, each database has coverage that—in its specific

domain—greatly exceeds that of Wikipedia. However, be-
cause the databases are domain-specific, they lack useful con-
nections to the more general knowledge found in Wikipedia.

In this paper, we present ETOW, a system that automat-
ically integrates relational databases with Wikipedia by re-
solving precisely which Wikipedia page, if any, corresponds
to each entity in a given relational database. This integra-
tion offers several benefits. For example, ETOW can en-
hance the relational database with helpful links into the gen-
eral Wikipedia knowledge base. Likewise, as we illustrate,
information from the database can be utilized to augment in-
foboxes on Wikipedia pages, or to create appropriate new
pages. Further, in combination with recent automated tech-
niques for categorizing Web pages in terms of Wikipedia
concepts [Gabrilovich and Markovitch, 2007] and identifying
mentions of Wikipedia concepts in text [Milne and Witten,
2008; Cucerzan, 2007], ETOW can link entities in relational
databases to relevant content in the Web at large.

Resolving correspondences between database entities and
Wikipedia pages is challenging primarily because multiple
distinct entities may share the same name. For example, con-
sider a “musicals” database containing a record for the Broad-
way hit “Chicago”; of the more than twenty Wikipedia pages
corresponding to different meanings of the word “Chicago”
(including a city, a typeface, a poem, a magazine, and so on),
only one is a correct match for the musical. While Wikipedia
does include a category system for articles, it is known to be
both incomplete and unreliable [Wu and Weld, 2008]; fur-
ther, even an improved category structure is unlikely to ex-
actly match the relational structure employed in a particular
database. Thus, identifying the correct page requires utiliz-
ing other clues as well, such as whether the Wikipedia page
includes text indicative of the entity’s type, or whether the
page text mentions the attributes and relations of the entity in
the database. ETOW employs machine learning techniques to
effectively identify correspondences based on these features.

In this paper, we introduce the task of learning to auto-
matically integrate relational databases with Wikipedia. Our
contributions are as follows:

1. We present a general method, ETOW, which employs ma-
chine learning techniques to automatically resolve rela-
tional database entities to Wikipedia pages, using a small
number of labeled examples per entity type.
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2. In experiments with two distinct databases, we demon-
strate that ETOW can effectively resolve thousands of en-
tities to Wikipedia. ETOW is shown to achieve high preci-
sion (0.9) on average, at an acceptable level of recall (0.74).
Compared with baseline algorithms, ETOW reduces error
in terms of F1 score by 19% on average, and reduces false
positive rate by 50%.

3. We present evidence suggesting that the integration per-
formed by ETOW can offer substantial improvements to
the coverage of both Wikipedia and the database.

The remainder of the paper is organized as follows. We de-
fine our task formally in Section 2, and present our system in
Section 3. The experimental results are presented in Section
4, and we provide evidence suggesting ETOW’s utility in ap-
plications in Section 5. Section 6 discusses related work, and
the paper concludes with a discussion of future work.

2 Problem Definition
We consider a relational database consisting of a set of en-
tities E, relations R, and types T . Each r ∈ R is a binary
relation over the set of entities.1 Each entity is of exactly
one type (analogous to a table in a database implementation).
Each type defines a set of attributes which have numeric or
symbolic values for each entity of the type.

For example, a nutrition database may contain a relation
is rich in which holds between the entities Dark Chocolate
and Anti-oxidants. Further, both Dark Chocolate and Broc-
coli may be members of the Food type in the database, charac-
terized by attributes such as Food.calories per serving. Fig-
ure 1 shows an example from the company database used in
our experiments.

We represent Wikipedia as a set P of pages. Each page p ∈
P is described by attributes including its title, text, category
information, and so on.

Our task is to resolve which Wikipedia page, if any, cor-
responds to each relational database entity. More formally,
we say an entity matches a Wikipedia page if the concept de-
scribed on the page is the same as that represented by the
database entity. We then define our task as follows:

Definition 1 The database-to-Wikipedia resolution prob-
lem is the task of finding a mapping φ : E → (P ∪ {null})
from entities E in a given relational database to pages P in
Wikipedia, such that φ(e) is a Wikipedia page matching the
entity e if such a page exists, and φ(e) is null otherwise.

Our task definition considers Wikipedia pages as the tar-
gets of entity resolution. This definition may be too nar-
row for cases in which database entities refer to concepts de-
scribed on only a portion of a Wikipedia page (for example,
“Dark Chocolate” is described on a portion of the “Choco-
late” page). However, as we demonstrate in our experiments,
the assumption that entities correspond to individual pages
often holds in practice.

1Our discussion and experiments focus on binary relations; the
extension to relations of higher arity is straightforward.

3 The ETOW system
ETOW, so-called because it maps entities to Wikipedia,
solves the database-to-Wikipedia resolution using machine
learning. Starting with a small set of seed correspondences,
ETOW trains a classifier for each type to estimate whether a
given pair (e, p) ∈ E × P is a correct match. Below, we
describe a set of simplifying assumptions ETOW makes for
tractability, and then describe the ETOW algorithm, classifier,
and feature set.

3.1 Assumptions
For a reasonably large relational database containing millions
of entities, there are trillions of potential correspondences be-
tween the database entities and Wikipedia’s millions of pages.
Clearly, narrowing the space of possible matches is required.
We employ the following simplifying assumptions:
• We assume that each entity e has a name attribute, such

that if e matches a page p, then the name of e is the title
of p, with the potential addition of disambiguating text in
trailing parentheses (as is standard in Wikipedia to denote
specific senses of a term, e.g. “Chicago (2002 film)”).

• We assume each database entity matches at most one
Wikipedia page.
These assumptions dramatically simplify the resolution

task, and hold the vast majority of the time in practice. In
our experiments, the first assumption reduced the number of
matches ETOW considered by more than four orders of mag-
nitude, and was in fact true for more than 95% of the entities.
The percentage is so high partly because for entities referred
to by multiple distinct names, Wikipedia typically includes
redirect pages linking the multiple names to a single, unified
page. For example, the page titled “William Henry Gates”
redirects to a page titled with the more common name of the
founder of Microsoft, “Bill Gates.” This practice helps ensure
that if an entity e is described on Wikipedia page p, either p
or some page redirecting to p will be titled with the name for
e employed in the database.

The second assumption held in all cases we examined.
By eliminating many potential matches, this assumption im-
proved precision in our experiments considerably.

3.2 Algorithm
The algorithm ETOW follows is shown in Figure 2. ETOW
begins by applying the first assumption detailed above to ob-
tain a set C of candidate matches: all pairs (e, p) such that
the entity e and the page p refer to the same name. ETOW
invokes a classifier (detailed below) that assigns a probability
to each candidate match. For entities e for which some page
p is a greater than τ likelihood match, ETOW applies the sec-
ond assumption, choosing as the match for entity e the most
probable page p according to the classifier. The use of a prob-
abilistic classifier and threshold τ allows ETOW to trade-off
precision and recall according to application requirements—
we illustrate this capability of ETOW in our experiments.

3.3 Classifier and Feature Set
ETOW employs inductive learning to train the probabilistic
classifiers it utilizes to identify matches. In our experiments,

28



name Jay Adelson

description Jay Adelson is the
co-founder and
CEO of Digg…

… …

CEO

name Digg

founded 10/11/04

category Web

… …

Company

name Greylock

url greylock.com

description They work closely and 
supportively with…

… …

Financial Organization

Database

Figure 1: The database-to-Wikipedia entity resolution task. The goal is to obtain links between database entities of various
types to their corresponding Wikipedia pages (indicated with dashed lines). Connections between two database entities indicate
relationships between the entity types (multiple arrows signify a mapping to potentially many entities); connections between
Wikipedia pages indicate hyperlinks.

ETOW(Pages P , Entities E, Classifier ΦE)
C = (e, p) such that p ∈ P is titled with the name

of e (modulo trailing parenthetical text)
for e ∈ E:
φ(e) := arg maxp ΦE((e, p) ∈ C)
if φ(e) < τ
φ(e) := null

output φ

Figure 2: Pseudocode for ETOW at run-time. The classifier
ΦE assigns probabilities to candidate matches for entities in
E, and the threshold τ is a parameter of the system.

we train a Support Vector Machine classifier for each en-
tity type, using a small number of hand-labeled examples per
type. We utilize the libSVM package, configured to produce
probabilistic output [Chang and Lin, 2001].

ETOW’s classifier estimates the probability that a given
pair (e, p) is in fact a correct match. The features for this
classification task were chosen based on two primary criteria.
First, because ETOW is intended to be widely applicable, the
features should be general-purpose and not tied to a specific
database or domain. Second, as we wish train the classifier
using only a small number of labeled examples, the feature
space cannot be too large.

The features we employ for a given candidate match (e, p)
are detailed below. Many of the features are computed based
on “known” matches of similar types. In the standard ETOW
algorithm, the known matches are simply those in the train-
ing set; however, as we describe in Section 4.3, the values
can also be updated dynamically in an iterative, self-training
configuration.

Entity Name/Page Title Features
Ambiguous entity names are disambiguated in Wikipedia
page titles through the addition of text in trailing parentheses,
as in “Chicago (2002 film).” Although the added text does
not follow any consistent standard, it can be informative for
identifying matches. For each pair (e, p), we created two fea-
tures: a binary feature indicating whether p’s title has text in
trailing parentheses, and a continuous feature measuring the
similarity between any parenthetical text of p to that of known
matches of entities of e’s type. We compute this similarity as
the cosine measure between bag-of-words representations of
the texts.

We would expect that candidate matches for more obscure
or less ambiguous entity names are more likely to be correct.
Thus, we include a feature giving the frequency of the en-
tity name on the Web, as estimated from the Google n-grams
data set,2 as well as a feature giving the number of distinct
Wikipedia pages titled with the entity name.

Textual Features
For correct matches (e, p), we expect the text of p to include
some of e’s attribute values or related entity names. Let a
related entity name of an entity e be all names of entities e′

where r(e, e′) or r(e′, e) occurs for some r ∈ R. We include
a feature giving the cosine similarity between e’s related en-
tity names and a bag of words representing its attributes, a
feature equal to the fraction of e’s related entity names that
appear in p, and a feature giving the Web frequency of the
least-frequent related entity name of e found on p.

2For entity names longer than the five word limit of the data set,
we estimate the frequency using a five-gram language model.
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Relational Features
As shown in Figure 1, it may be the case that the rela-
tional structure of the database is reflected in the link struc-
ture of Wikipedia. Thus, we include features expressing how
well the relational structure corresponds to Wikipedia links.
Specifically, for each entity type related to e, we add a fea-
ture giving the fraction of matched entities e′ related to e for
which e′’s match has a hyperlink to or from p.

Category Features
Wikipedia’s pages are organized into a hierarchical category
structure, where each page may be included in an arbitrary
number of categories. Although the structure is inconsistent
and incomplete, entities of a given type tend to be mapped
to similar branches of the structure, generally speaking. We
compute a “bag of categories” for each page p consisting of
its categories and up to three parent categories. Our category
feature is then the cosine similarity between the bag of cate-
gories for p and the bag of categories for all known matches of
entities of e’s type. For category features, we employ TF/IDF
normalization in the cosine similarity computation.

Popularity Features
We expect measures of the popularity of the Wikipedia page
p and the entity e to be informative for the classification of
a candidate match. More popular database entities are more
likely to have a corresponding Wikipedia page. Also, the pop-
ularity of an entity and its corresponding page should exhibit
some correlation. As direct popularity information is not ex-
ternally available, we use surrogate measures. For the media
products database, we treat the sales rank attribute as a mea-
sure of an entity’s popularity; for the companies database we
use the string length of the database’s content describing the
entity. We approximate the popularity of a Wikipedia page p
by the number of Wikipedia pages linking to p.

4 Experiments
In this section, we describe experiments measuring ETOW’s
effectiveness in the database-to-Wikipedia resolution task for
two distinct databases. We begin by describing our data sets,
and then present our results.

4.1 Data Sets and Experimental Setup
We experimented with two distinct relational databases. The
first, media products, is derived from the Amazon.com prod-
uct database. Our version of the database included three
types: a products type consisting primarily of recordings and
films; an artist type of contributors to the products (bands,
composers, actors, directors, etc.); and a track type represent-
ing each recording’s individual tracks. The second database,
companies, is a subset of CrunchBase, an online database of
information on companies and their funding sources. As il-
lustrated in Figure 1, the three entity types in this database
were companies, CEOs, and financial organizations.

The media products database consisted of about 961,000
products, 390,000 artists, and 7.8 million tracks. From this
large database, we sampled a set of about 2,400 products
which had at least one candidate Wikipedia page match.

These products and their associated artists and tracks com-
prised a working set for the products database, which we em-
ploy in our experiments. All feature values for the media
products experiments were computed relative to this working
set of entities. The companies database consisted of about
15,000 company entities, 1,700 financial organizations, and
4,000 CEOs; we used this database in its entirety.

To obtain training and test data, we selected a set of 40
entities of each type from the media products database, and
80 entities of each type from the companies database, with
the requirement that each entity have at least one candidate
match in Wikipedia. We hand-labeled the resulting candidate
matches, producing a data set of 720 labeled match candi-
dates for the media products database, of which 67 were cor-
rect, and 346 match candidates for the companies database,
of which 157 were correct. Thus, our experiments test ETOW
on two data sets with very different characteristics, as seen in
the fraction of correct candidate matches (0.09 for the media
products database, vs. 0.45 for companies) and the degree
of ambiguity (6 possible matches per entity on average for
media products, vs. 1.44 for companies).3

In our experiments, we measure performance via five-fold
cross-validation over the labeled data (thus, training sets are
relatively small—32 or 64 hand-examined entities per type).
We partition the candidate matches by database entity, mean-
ing that the same database entity never appears in the training
set and the test set at the same time.

We compare the performance of ETOW with two intuitive
baselines. The first, All Exact, marks a candidate match as
positive iff its title exactly matches the name of the entity (i.e.,
the Wikipedia page title has no trailing parenthetical text).
The second, All Unambiguous, marks a candidate as positive
iff it is an exact match and the entity name is unambiguous
in Wikipedia (note that this baseline can still generate false
positives, because frequently the database refers to an entity
other than the one appearing in Wikipedia).

We used a Gaussian kernel for the SVM employed in
ETOW, with parameters chosen via grid search and 2-fold
cross-validation on the training set. The parameter τ is set to
0.5 (placing equal emphasis on false positives and false neg-
atives) unless indicated otherwise.

4.2 Results
We first investigate how well ETOW performs in the
database-to-Wikipedia resolution task relative to baseline
techniques. The results of this experiment are shown in Table
1. We measure performance in terms of accuracy (the frac-
tion of candidate matches correctly classified as positive or
negative), precision (the fraction of positively classified can-
didates that are in fact correct), recall (the fraction of correct
matches that are classified as positive) and F1 (the harmonic
mean of precision and recall).

The results indicate that ETOW is substantially more ef-
fective than the baseline methods in both domains. In terms
of F1, ETOW reduces error (deviation from 1.0) by 23% over
the best performing baseline on the media products data, and

3On average, Wikipedia contains 1.05 distinct pages per concept
name, so both databases exhibit above-average ambiguity.
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Media Products Companies
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

All Exact 0.543 0.657 0.595 0.918 0.702 0.962 0.812 0.798
All Unambiguous 0.722 0.582 0.645 0.941 0.816 0.904 0.858 0.864
ETOW 0.930 0.597 0.727 0.958 0.864 0.892 0.878 0.887
ETOW + self-training 0.911 0.612 0.732 0.958 0.842 0.917 0.878 0.884

Table 1: Performance of ETOW on the database-to-Wikipedia resolution task. ETOW outperforms the baselines by a substantial
margin on both data sets, reducing error in terms of F1 by an average of 19%, and false positive rate by an average of 50%,
when compared with the best performing baseline. Self-training has only a minor impact on performance.

by 14% for the companies data, for an average error reduc-
tion of 19%. On both data sets, neither baseline has a level
of precision that is likely to be high enough for many data in-
tegration applications; ETOW improves on this substantially,
reducing the false positive rate of the most precise baseline
by an average of 50% across the two data sets.

As noted in Section 5, different applications may have very
different requirements for precision and recall. The second
question we investigate is whether ETOW can be used to cater
output toward high-recall or high-precision performance, by
manipulating the probabilistic threshold τ . As shown in Table
2, the precision of ETOW does in fact increase markedly if we
increase τ to 0.95, at the cost of some recall. When we lower
τ to 0.05, we see that recall increases greatly at the cost of
some precision.

Media Products Companies
Precision Recall Precision Recall

τ=0.95 0.969 0.463 0.895 0.108
τ=0.05 0.594 0.851 0.726 0.994

Table 2: Performance of ETOW when varying the classifi-
cation threshold τ . The precision or recall of ETOW can be
increased substantially as τ varies.

4.3 Enhancement to ETOW: self-training
Several of ETOW’s features for a given candidate match be-
come more informative when other matches are known. For
example, the relational features for a candidate match (e, p)
are only helpful when matches for entities related to e are
known. Similar are the categorical and title-based features
that compare aspects of p to other pages known to match to
entities of e’s type. This suggests a strategy of first identi-
fying the easy-to-classify matches, and using these to inform
the classification of the more difficult candidates. As an ex-
ample, the entity Catherine Zeta-Jones is unambiguous and
easy to match. We would like to leverage this easy match
to help us find the correct Wikipedia page for more difficult-
to-match entities related to Zeta-Jones, like the ambiguously-
named 2002 film “Chicago.” This strategy seems promising,
because the correct matching page (“Chicago (2002 film)”) is
indeed linked with the Zeta-Jones page, whereas the page for
the city of Chicago, for example, is not.

We incorporate this intuition in ETOW using a semi-
supervised self-training approach. After training ETOW on
the training set, we apply the system to the unlabeled can-
didate matches. Those candidate matches with probability

greater than δ are added as positive training examples, and
those with probability less than 1 − δ are added as negative
examples, where δ is a parameter of the system. We then
re-compute the feature values using the new matches, and re-
train the classifier on the new features and augmented training
set. After repeating this process for k iterations, we measure
performance on the test set.

The results of this enhancement are shown in the bottom
row of Table 1, using values of δ = 0.95 and k = 10.4
Self-training does not provide substantial improvement, on
average. Overall performance is essentially unchanged, with
recall increasing somewhat and precision falling.

We believe the reasons self-training does not improve per-
formance are two-fold. First, any benefits from exploiting
similarities between the Wikipedia hyperlink structure and
the relational database structure are to a large degree obvi-
ated by the textual features we employ: when a page links to
a related entity page, the anchor text is typically the related
entity’s name. Second, the feature space is small enough that
the original labeled training data is relatively representative,
so the additional training examples produced by self-training
are less beneficial. Exploring self-training with larger feature
spaces is an item of future work.

5 Applications
In this section, we investigate ETOW’s value in applications.
We illustrate how the integration performed by ETOW can
provide new capabilities for online databases, and improve
the coverage of both the databases and Wikipedia.

ETOW offers a number of possibilities for enhancing
online relational databases. By augmenting the relational
database with links to Wikipedia pages, or by directly har-
vesting Wikipedia links or content, we could dramatically im-
prove the generality of a database’s content and search capa-
bilities. Extrapolating from our experiments with the high-
precision version of ETOW, we estimate that the system is
able to correctly identify matches for 13,000 artist entities in
the media products database, at precision of approximately
0.97. Further, we find that the matching Wikipedia pages
for the entities contain many outgoing links, for an aver-
age of 56 per page. The linked pages cover a multitude of
topics not found in the database, such as the artist’s educa-
tional background and related artistic movements. The ability

4In previous experiments, adjusting the threshold or the number
of iterations did not result in substantial changes in performance.
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to search a database based on these general relationships—
retrieving all recordings by artists linked to one’s hometown,
for example—would offer an enriched user experience.

“Infoboxes” on Wikipedia pages list relevant at-
tribute/value pairs in an organized format. Recent efforts
have attempted to increase the coverage of infoboxes au-
tomatically using text extraction [Wu et al., 2008]. Could
ETOW be employed for the same task? In measurements
with the companies database, we find this approach holds re-
markable promise. For CEOs, the majority of the Wikipedia
pages (64%) do not contain infoboxes at all, and in each
of these cases an infobox could be created containing at
least one attribute from the database. For companies and
financial organizations, infoboxes are more common, and
contain between 6-7 attributes on average. Many infoboxes
are missing particular attribute values, and we find that in the
correspondences identified by ETOW, the database informa-
tion can augment the infoboxes with 2.6 values for financial
organizations on average, and 2.5 values for companies, for
an average of a 40% improvement in coverage.

ETOW also detects database entities that are not currently
found in Wikipedia (i.e., those with φ(e) = null). In these
cases, the database information can be used to generate high-
quality “stub” pages. Based on a random sample of existing
Wikipedia pages, we expect that the stub pages generated
from database information would be at least as comprehen-
sive as that of 60% of existing CEO pages, and 53% of com-
pany pages. To avoid creating duplicate pages, for this task
we employ the high-recall version of ETOW (with τ = 0.05);
for the companies database, this approach can create thou-
sands of stub pages with a duplicate rate of less than 5%.

Lastly, the infoboxes in the Wikipedia pages ETOW iden-
tifies as matches can improve the coverage of the database.
For the companies database, the Wikipedia infoboxes con-
tain multiple fields—e.g., net worth for CEOs, or revenue
for companies—not found in the database. For the matches
ETOW identified, we found an average of 1.9 values per in-
fobox that could be added to the database.

6 Related Work
To our knowledge, this work is the first attempt to automat-
ically integrate relational databases with Wikipedia. Recent
work aimed at integrating Wikipedia with the Cyc ontology
provides strategies for a disambiguation problem similar to
ours [Medelyan and Legg, 2008]. However, that work targets
the Cyc common-sense ontology, in contrast to our goal of a
general architecture for integrating relational databases with
Wikipedia.

Section 5 establishes the potential value of ETOW for au-
tomatically augmenting Wikipedia infoboxes. Another strat-
egy for this a task is to extract information from text on
the Web [Wu et al., 2008]. Our work is complementary to
this approach. ETOW augments Wikipedia using relational
databases, which (even when online) are often not amenable
to extraction methods that detect assertions in running text,
like those employed in [Wu et al., 2008]. Databases also of-
fer higher precision than that of current extraction techniques.

Recent efforts to automatically construct a database

from the information in Wikipedia infoboxes [Auer and
Lehmann, 2007] suggests an alternative strategy for integrat-
ing databases with Wikipedia: first construct a database from
Wikipedia infoboxes, and then apply well-studied methods of
database integration (see e.g., [Doan and Halevy, 2005]). In
contrast to this strategy, ETOW can be applied in the many
cases in which no Wikipedia infobox is present. Lastly, in
contrast to recent efforts toward linking mentions of concepts
in text to their corresponding Wikipedia page [Milne and Wit-
ten, 2008; Cucerzan, 2007], our focus is on integrating rela-
tional databases, rather than textual content.

7 Conclusions and Future Work
In this paper, we presented ETOW, a general-purpose mech-
anism for integrating relational databases with Wikipedia.
ETOW uses machine learning techniques to identify corre-
spondences between database entities and Wikipedia pages.
In experiments with two distinct databases, ETOW was
shown to outperform baseline techniques.

ETOW and related research efforts present exciting possi-
bilities for utilizing Wikipedia to perform large-scale seman-
tic integration of online databases and Web content in gen-
eral. In future work, we plan to experimentally investigate
applications of ETOW and evaluate on additional data sets.
We also plan to investigate active learning techniques, which
offer the promise of improved accuracy while maintaining
ETOW’s limited need for human-annotated input.

References
[Auer and Lehmann, 2007] Sören Auer and Jens Lehmann.
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Abstract 
Task management is a core part of knowledge 
work. However, intelligent assistance for task 
management is hampered be the lack of large 
amounts of structured knowledge about user tasks. 
In this paper, we present a novel approach, Social 
Task Networks, for obtaining rich user contributed 
task information by integrating task management 
with social networking sites. 

1 Introduction 
A central part of knowledge work is the collection, assign-
ment, sharing, tracking and scheduling of tasks. Such task 
management activities are performed using a variety of 
tools, most commonly to-do lists, calendars and email. Both 
commercial companies1 and the AI community have devel-
oped systems to extend these tools to provide intelligent 
assistance for task management [Myers, K. et al. 2007] 
These systems take advantage of both the content of task 
artifacts but also their structure [Kushmerik, N., et al. 2005]. 
For example, a system may analyze the text of an email but 
will also derive information from how the text is organized 
into sender, receiver, subject, and body fields. Indeed, this 
structured information can make the development intelligent 
assistants significantly easier.  
 However, the structure available to intelligent assistants is 
often limited because of the nature of the task management 
tool being used. For example, the explicit structure in to-do 
lists, the most popular task management tool [Jones, S.R. et 
al. 1997], is limited to the order in which the entries occur, 
which we note is often not meaningful. In addition to this 
lack of structure, task artifacts are often not collated either 
through tool limitations or isolation of the data in personal 
repositories (notepads, sticky notes or individual email ac-
counts). This limits the information that systems can lever-
age.  
 Thus, our goal is to investigate mechanisms to enable task 
management using richly structured user contributed task 
knowledge. To achieve this, we have designed a new ap-
proach to task management, termed a Social Task Network, 
that combines ideas from task representations in hierarchal 
planning, scripting in distributed environments and sharing 

                                                
1 http://www.reqall.com/ 

in social networking sites. This approach allows the acquisi-
tion of knowledge about how tasks are situated in a social 
network, the hierarchical organization of tasks in real world 
settings and the ability for particular tasks to be automated. 
In this paper, we detail this new approach to task manage-
ment and how it will enable the acquisition of richly struc-
tured task knowledge. The approach is grounded in a study 
of to-do lists and an initial prototype system.   

2 The Social Structure of Tasks 
Tasks are inherently collaborative. Whether scheduling a 
meeting, writing a portion of a document for a colleague, or 
asking a family-member to pick up milk at the grocery store, 
tasks often require the interaction of multiple people in or-
der to be accomplished. Indeed, a central part of task man-
agement is the tracking of how tasks have been delegated 
and shared.  
 To confirm this intuition, we performed an analysis of a 
corpus of to-do list items gathered during CALO, a large 
project to develop intelligent assistants for office-related 
tasks. The corpus of 1200 to-dos was gathered over a period 
of several months from a dozen users. [Gil and Ratnakar, 
2008], present a detailed analysis of the corpus. Here we 
revisit the corpus focusing on collaboration.  

We manually checked the entire corpus and found that 
17.5% of the to-dos were collaborative in nature. Either the 
to-do referred to a task to be accomplished for another per-
son (e.g. read John’s document), scheduling a meeting (e.g. 
discuss program with Mark), or assigning a task to another 
person (e.g. email Mary about John). While 17.5% is a sig-
nificant percentage of the tasks, we believe that this under-
states the number of collaborative tasks. From our observa-
tion, it seems that many tasks, while not specifically identi-
fying collaborators, are sub-tasks of larger collaborative 
tasks. For example, background reading necessary to par-
ticipate in a meeting.  

Thus, given the collaborative nature of tasks, social rela-
tionships provide a key structure for tasks. However, this 
social structure is not explicit in common task management 
tools such as to-do lists and calendars. Social relationships 
are more evident in email through addresses and have been 
taken advantage to create task management interfaces [Bel-
lotti V., et al. 2003]. However, email addresses do not cap-
ture the nature of the social relationships or information 
about the participants themselves. Groupware systems do a 
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better job of explicitly capturing social relationships but are 
limited to the particular organizations that adopt them. 

To address this lack of social relationship information, we 
decided to integrate task management with a social network-
ing site. We present our initial prototype in the next section.  

3  Task Management in a Social Network 
As previously mentioned, to-do lists are probably the most 
widely used task management tool. Therefore, we developed 
a To-Do List application for Facebook, a very popular social 
networking site.  The application is instrumented to collect 
data from actual use. We obtained preliminary feedback 
from a small user group.  This application was released 
early December, and advertised to gather a substantial user 
base. Currently, there are 97 monthly active users. The ap-
plication is accessible at http://apps.facebook.com/todo-
lists/.  A screenshot of the interface is shown in Figure 1.  
  The application provides standard to-do features includ-
ing setting dates, priorities,  categories and comments. Be-
yond these features, we have also added Facebook specific 
features for sharing to-do list entries. Users can share their 
to-do lists with everyone on Facebook, people just in a par-
ticular network (i.e. larger organizations of people like a 
university), group or with only their friends. Additionally, 
users can post what we term a “SOS”, which is a broadcast 
to all the users friends that they need help with a particular 
task. Anecdotally, these sharing features have been of real 
use to the users. In particular, we have seen users organize 
everything from evenings out to computer LAN parties. 
Additionally, we have received requests for more sharing 
features such as the following: 

“Is there any way to possibly choose more selec-
tively who can see each item in the to do list? I am 
thinking about surprise parties and secret meetings, 
and right now its either everyone or no one. [sic]” 

Thus, the sharing features enabled by Facebook are a core 
feature set for attracting users. Moreover, they allow us to 
unobtrusively gather detailed information about how users 
share tasks and connect that to profiles of the user. For each 
to-do entry, we maintain the Facebook id of the user and can 
thus access pertinent user profile information, everything 
from the age of the user, to their list of friends, and interests. 
We also maintain which users comment on other users 
shared to-do entries to track which users are actively sharing 
tasks.  
 Thus, this prototype was a good first start towards collect-
ing rich task knowledge structured around social relation-
ships. It also revealed a great deal about the kinds of task 
people jot in their to-do lists, and about the potential for 
automatic assistance. 
• Many tasks had very coarse granularity.  Examples are 

“Get Christmas presents”, “Study nursing”, and “Get 
back in shape”.  These are high-level tasks that in-
volve many substeps and activities.  There are no con-
crete first steps enumerated, which would be useful 
for a user to get started on the overall goal expressed 
in the to-do.   

• Many entries were in other languages. 
• Many tasks that were concrete had only some aspects 

that could be automated.  For example, “Write 
Christmas cards” or “Read Dune” could involve some 
on-line purchasing that could be automated but most 
of the activity was meant to be done by the person 
themselves.   

• Some tasks could be fully or mostly automated.  Ex-
amples include “Renew my driver’s license”, “Buy 
iPhone”, “Rent Aliens movie”. 

Figure 1: To Do List Facebook Application 
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• Many tasks were not amenable to automation, for ex-
ample, “Go to the mall”. 

• Some tasks could be accomplished by friends of the 
users. For example, “Get Volunteers for a Meal”.    

With these lessons in mind, we devised a new approach to 
personal task management: “social task networks”.  

4  Social Task Networks 
In social task networks to-do lists and other task artifacts are 
organized around an explicit social network. Tasks are de-
composed into subtasks with enough detail to allow tracking 
and sharing in the network.  More specifically: 
• To-dos (i.e. tasks) are organized hierarchically and are 

described in terms of their constituent subtasks.  The 
set of to-dos that are active at any given time are often 
part of enveloping tasks.  This will allow users to ex-
press tasks at coarser and finer granularity, giving the 
task a high level coarser description when it is first 
jotted down and later drilling down into details  

• Tasks include both automatable steps and non-
automatable steps.  The latter provides context for the 
user and serves as a reminder that the task is pending 
their attention and is up to them and not the system. 

• To-dos should be assignable so that assistance in terms 
of automation can be provided by other individuals in 
the social network.  For example, a project assistant 
may provide the maximum allowable amount to spend 
on a new laptop purchase, which may be just one step 
in the overall task of purchasing a new computer.  
Other users can decline assigned tasks, but if they ac-
cept the user should have visibility about its status. 

• To-dos should be shareable so that assistance may be 
provided by other individuals in the social network.  
For example, if a to-do entry is to find a hotel in 
Washington DC, someone else may have a list of fa-
vorites that they are willing to suggest. 

• To-do decompositions should be shareable, so that 
know-how can be shared.  For example, if someone is 

looking for job announcements someone else may 
have just looked and have a task description to share: 
a set of steps that they followed searching diverse web 
sites and mailing different individuals.   

Thus, social task networks not only provide the context of 
a social network but also explicitly represent the hierarchal 
nature of tasks as well as the possible mixture of automated 
and non-automated tasks. Figure 2 shows a redesigned ver-
sion of our To-Do List application that follows the afore-
mentioned desiderata. In particular, the design supports hi-
erarchal tasks where both automated and non-automatable 
steps are mixed together. In particular, we show that some 
steps could be automated through web scripting applications 
such as IBM’s Coscripter or Mozilla’s iMacros. 

Just as Wikipedia has become a valuable knowledge 
source for AI researchers, social task networks will provide 
a powerful new knowledge source for developing intelligent 
assistance for task management. 
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1 Introduction
It has long been recognized that in order to process natu-
ral language, computers require access to vast amounts of
common-sense and domain-specific world knowledge [8].
The method of Explicit Sematic Analysis (ESA) [3; 4] incor-
porated natural concepts derived from Wikipedia to represent
the meaning of words and texts, thus explicitly using knowl-
edge defined and manipulated by humans. Results achieved
on semantic relatedness tasks using ESA were highly corre-
lated with human judgements emphasizing how beneficial ex-
ternal world knowledge is.

However, in addition to using background knowledge in
the form of independent natural concepts, humans use an-
other innate ability, extremely beneficial for judging semantic
relatedness, the ability to generalize. For instance, correctly
identifying the relation between the words cat and dog re-
quires a process of generalization followed by a recognition
of an intersecting higher level concept, Pets or Animals.

ESA represents semantic meaning as a flat interpretation
vector in the multi-dimensional concepts space. Consider the
top twenty concepts generated by ESA for the word cat: 1.
CAT (UNIX) 2. CHESHIRE CAT 3. COOL CAT 4. PLASAN SAND

CAT 5. CLAUDE CAT 6. BIG CAT 7. STRAY CATS 8. FELIDAE

9. CAT’S EYE (FILM) 10. CAT SCRATCH FEVER 11. SABER-
TOOTHED CAT 12. NEW BRITAIN ROCK CATS 13. CATS (MUSI-
CAL) 14. CATS & DOGS 15. CLAN NOVA CAT 16. CAT ON A

HOT TIN ROOF 17. SACRAMENTO RIVER CATS 18. WILDCAT

19. JUNGLE CAT 20. LEOPARD CAT

This example demonstrates several drawbacks in con-
structing a flat semantic representation. First, observe that 13
out of the top 20 concepts are not related to the core meaning
of the word cat, as they describe plays, films, rock bands etc.

Moreover, the representation contains overly specific con-
cepts such as NEW BRITAIN ROCK CATS, a minor league base-
ball team, that add noise. Finally, ESA assumes concept in-
dependency while obviously, the concept BIG CAT is related
to WILDCAT and LEOPARD CAT.

These observations emphasize the importance of general-
ization and motivate the construction of a semantic interpreter
which incorporates the inner structure of Wikipedia-based
concepts. This is particulary important within the framework
of semantic relatedness tasks where a high-level conceptual
recognition is often required.

In this work, we present a novel approach called CHESA1,
for representing meaning within a hierarchical compact struc-
ture, capturing semantics at different levels of specificity.
This is done by incorporating additional information from
Wikipedia categories graph. Instead of an interpretation vec-
tor constructed with ESA, our method represents meaning
through an interpretation rooted directed acyclic graph where
every node is assigned with an association score.

2 Compact Hierarchical Representation
Wikipedia articles are part of a large taxonomy-like structure
imposed by a network of Wikipedia categories, where leaf
nodes correspond to articles and inner nodes correspond to
categories.

We convert the Wikpedia category graph into a simpler
form of multiple-inheritance hierarchy. We do so by travers-
ing it starting from the MAIN TOPIC CLASSIFICATIONS category
in a BFS order. When a category is reached we add it to the
hierarchy unless it was already included into the hierarchy
through a shorter path from the root. All reached articles are
automatically added to the representation.

Let C be the complete set of nodes in a given hierarchical
taxonomy. Let c : C → 2C be a function from a node to its
children. Let l : C → 2C be a function from a node to the set
of all leaves reached from it, defined directly by c. Let r ∈ C
be the root node of the hierarchy. We denote by H(C, c, r) a
multiple-inheritance hierarchy with a set of nodes C, children
mapping function c and a root r.

Now, let T be the set of all terms in the collection of ar-
ticles corresponding to leaves in the hierarchy, and denote
by count(t, n) the number of times the term t appears in
a node n. Since only leaf nodes have count(t, n) > 0
for some t, we define the term count for inner nodes as
count(t, n) =

∑
`∈l(n) count(t, `). We denote by tf(t, n)

the term frequency of the term t in node n, defined by
tf(t, n) = count(t, n)/

∑
t′∈T count(t′, n).

In the following, we present two strategies for construct-
ing compact hierarchical representations as well as an algo-
rithm for constructing semantic interpretations of any given
granularity level. All three algorithms receive a term t and a
hierarchy H(C, c, r) as input.

1Compact Hierarchical Explicit Semantic Analysis
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The TD-CHESA algorithm, performs a DFS top-down
traversal over the nodes of the hierarchy. The algorithm starts
with a representation containing the root r only. When a node
n is reached, for every child d ∈ c(n) the algorithm applies
Pearson’s Chi-square test to determine whether d is signif-
icantly more associated with t than n. If so, d is included
in the representation and DFS traversal proceeds within the
subtree of d. Intuitively, TD-CHESA performs specification
by demand, namely, it starts by representing the word on a
very high conceptual level, and iteratively reveals more spe-
cific meanings of the word, until it reaches the point where a
more specific description does not contribute to the semantic
interpretation of the word.

The BU-CHESA algorithm, starts by including all nodes
in C in the representation. Then, it iteratively prunes nodes
starting from the leaves, bottom-up, according to the afore-
mentioned statistical test. If a node is not pruned, all its an-
cestors automatically remain in the representation.

It is evident that in many cases the two algorithms pro-
duce different representations for the same term. TD-CHESA
produces more compact representations and usually focuses
on the primary meanings of the word, efficiently filtering out
over-specific concepts even if their association score is high.
For instance the concepts PLASAN SAND CAT and STRAY CATS

for the word cat are filtered out by that strategy. BU-CHESA
trims the representation hierarchy at places where generaliza-
tion is suitable. For example, the concepts BIG CAT, WILD-
CAT and LEOPARD CAT are trimmed by the bottom up strategy
while their mutual category FELINES remains.

Often, we need to represent semantics in various levels of
granularity due to time and space efficiency and comprehen-
sibility needs. We present an iterative algorithm, K-CHESA
that, given a size k, constructs a compact hierarchical seman-
tic interpretation with at most k nodes.

Let Q be a priority queue of hierarchy nodes. The algo-
rithm begins with a representation containing the node r only.
Then for every child d ∈ c(r), it computes the significance
score of d with respect to r, and inserts it into a Q. Now, let p
be the node which is currently placed at the front of Q. Then
p is included in the representation and is removed from Q,
while c(p) are inserted into Q. The algorithm stops when the
representation reaches the size of k, or once Q is empty. Fig-
ure 1 shows the representation of the word cat with k = 20.

For all three methodologies, once a representation is con-
structed for a given term, we assign association scores to all
nodes in the representation. We define the association score
of a term t with a node n within its hierarchical representation
as st,n = log tf(t,n)

tf(t,r) when r is the root of the hierarchy.
Our first usage of CHESA is for computing semantic re-

latedness between words. Intuitively, two words are related
when their hierarchical representations are similar with re-
spect to structure, having high association scores for inter-
secting concepts. We define the following relatedness score,
inspired by the cosine similarity metric for vector representa-
tions:

rel(t1, t2) =
∑

n∈C st1,nst2,n√∑
n∈C s2

t1,n

√∑
n∈C s2

t2,n
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Figure 1: CHESA Representation of cat with k = 20

3 Preliminary Evaluation
We implemented our CHESA approach using a Wikipedia
snapshot as of October 18, 2007. After parsing the Wikipedia
XML dump, we removed small and overly specific articles as
described in [3] as well as several types of categories such as
lists, stubs, and categories which names contained a specific
year. At the end of that process 497,153 articles and 125,542
categories were remained. The text of the articles was pro-
cessed as described in [3] and term counts were computed for
every term and article.

We then constructed a hierarchy, based on the Wikipedia
category graph, rooted at the MAIN TOPIC CLASSIFICATIONS

category and removed all articles and categories not reached
from that category. The final hierarchy contained 557,113
nodes.

We evaluated our approach on the the WordSimilarity-353
collection. Spearman rank-order correlation coefficient was
used to compare computed relatedness scores with human
judgements. We compare our results to ESA results on the
same Wikipedia dump as well as to other methods for seman-
tic relatedness computation.

Table 1 shows the results of applying TD-CHESA and BU-
CHESA methodologies to estimate relatedness of individual
term. The results show that BU-CHESA yields substantially
better results than TD-CHESA. Both strategies outperform all
presented methods but ESA.

We also compared the performance of K-CHESA with ESA
trimmed to top k concepts (with respect to their association
scores). Figure 2 shows the correlation coefficients for k be-
tween 10 and 500 for the two methods.

The results show that for k < 300, K-CHESA is superior to
ESA, and for k > 100 K-CHESA outperforms other methods
presented in Table 1. Interestingly, CHESA is able to cap-
ture semantic relatedness (correlation of 0.33) with extremely
small representations of size 10.
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Algorithm Correlation
WordNet [6] 0.35
Rogets Thesaurus [5] 0.55
LSA [12] 0.56
WikiRelate! [13] 0.50
MarkovLink [10] 0.55
ESA [3] 0.74
TD-CHESA 0.63
BU-CHESA 0.71

Table 1: Computing word relatedness
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Figure 2: The impact of representation size

4 Related Work
Several previous methods [2; 6; 1; 11; 9; 7] used hierarchi-
cal taxonomies to represent the semantic meaning of words.
Methods using lexical databases map text words into word
senses and use the latter as concepts. They then use various
metrics to compute relatedness using the properties of the un-
derlying graph structure.

These methods substantially differ from CHESA. They rep-
resent a term by a node in the hierarchy while CHESA uses
a hierarchical representation. Consequently, they use differ-
ent metrics to evaluate relatedness. While CHESA compares
the hierarchies representing the terms, the other methods
compare nodes using various graph-distance metrics. Also,
CHESA, like ESA, has a much richer vocabulary, as it gener-
ates its semantics from a large collection of text articles.

WikiRelate! [13] also uses Wikipedia categories to com-
pute semantic relatedness. However, it differs from CHESA
as it represents a term by short list of articles containing the
term in their title, and computes semantic relatedness based
on path distance and information content measures.

5 Conclusions and Future Work
We proposed a novel approach to represent semantic mean-
ing in the form of compact hierarchical structure derived from
natural concepts and the taxonomy imposed on them by the
Wikipedia category system. Our approach allows descrip-
tion of semantics in varying specification levels, capturing

relations between concepts and having the ability to gener-
alize. This is in contrast to the Explicit Semantic Analy-
sis approach which constructs a flat vector representation.
We observed that the compact representations constructed by
CHESA are much more intuitive and comprehensible than
those constructed by ESA. Empirical evaluation confirms that
using CHESA leads to substantial improvements in comput-
ing word relatedness when representation size is limited. It
shows CHESA’s ability to capture semantic meaning on high
conceptual levels. ESA still outperforms CHESA when using
its full interpretation vector. We believe that the main rea-
son are deficiencies in the category graph of Wikipedia. We
intend to apply more sophisticated preprocessing to amend
some of these problems.
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Abstract 

Great amount of user-contributed information pub-
lished on Wikipedia

1
 makes it a good source for 

knowledge and fact corpus. The unstructured text 
(articles text) and marked labeled data (infoboxes) 
can be used together as a corpus for variety of Ar-
tificial Intelligence and Machine Learning tasks, 
when the mapping between infobox (attribute-
values) and the article text is done. This paper 
presents WikiSLE (Wikipedia Semantic Label Ex-
tractor) along with the results and extracted dataset 
(made publicly available) that maps infobox infor-
mation onto the article text. 

1 Introduction 

With an extensive set of articles numbering almost 2.7 mil-
lion today, Wikipedia is one of the major user-contributed 
knowledge sources. The articles contain detailed informa-
tion about the entities in natural language, and the infoboxes 
contain semi-structured information. We observed that the 
information in the infoboxes also occur in the plain text of 
the articles in an unstructured nature. Therefore, it is possi-
ble to mark up the infobox information in the article plain 
texts.  For example, the first sentence of the article for 
Chris Buttars is “Chris Buttars (born April 1, 1942) is a 
Republican state senator for Utah representing senate dis-
trict 10.” and the Wikipedia infobox contains the informa-
tion “Utah State Senator” (Figure 1). It can be seen that it is 
possible to tag the exact occurrences of the words “state 
senator” and “Utah” in the article plain text as the label of 
the entity. This can be done by basically finding the match-
ing words on the plain text and the infobox label. We further 
extend this idea by finding the name phrase chunks in the 
plain text and then try to find the possibly non-exact 
matches. In our example, this process would give us “a Re-
publican state senator for Utah” as the semantic label for 
Chris Buttars. 
 Large-scale information extraction for web is an active 
research area. Web information extraction systems such as 
KnowItAll [Etzioni et al., 2004] extract facts and relation-

                                                 
1 Wikipedia: http://www.wikipedia.org/ 

ships from text using set of extraction rules for each class 
and relation from a set of generic, domain independent tem-
plates. Pasca et al. [2006] utilized generalized contextual 
extraction patterns to extract large amount of facts (of type 
person-born-in-year) from web. Turney [2001] used large 
number of mentions of entities on web as a measure to rec-
ognize synonyms. With exponential growth of Wikipedia 
articles, it is one of the largest sources of general knowledge 
on the web. And now, it is becoming the center of attention 
for the researchers to leverage this enormous corpus of facts 
to train machine learning algorithms, to extract information 
from, and to utilize for word sense disambiguation (WSD).  
For most of these tasks, the Wikipedia data needs to be pre-
processed before it can be used by learners or classifiers. 
Suchanek et al. [2007] extracted facts (Is-A and hasWonPr-
ize type) from Wikipedia to enrich YAGO. Wu et al. [2008] 
and [Wu and Weld, 2007] focused on automatic extraction 
of Wikipedia infoboxes and attribute values. In [Wu et al., 
2008], the focus was extraction of infoboxes for non-
infobox articles and automatic link generation for Wikipedia 
articles. In [Wu and Weld, 2007], training data was generat-
ed by finding exact matches of the attributes in the infobox, 
whereas in our approach we find the matches where words 
might be added, removed or altered.  

Ponzetto et al. [2007] built a large scale taxonomy (Is-A 
relations) by using category system of Wikipedia as a con-
ceptual network. Cucerzan [2007] used web and Wikipedia 
for disambiguation of named entities, where as Bunescu and 
Pasca [2006], used Wikipedia as training and testing data-
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Figure 1: Infobox and Article text example 

Infobox Data 
{{Infobox_Politician 

| name = D. Chris Buttars 
| birth_date = April 1 

| residence = [[West Jordan, Utah|West Jordan]] 

| office = Utah State Senator 

| term_start = 2001 

| term_end = Current 

| predecessor = L. Alma Mansell 

… 

 
Article Text 

D. Chris Buttars (born April 1, 1942) is a Republican mem-

ber of the Utah State Senate representing senate district 10… 
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Figure 2:  Labeling Entity names with Semantic Labels 

 
sets for SVM kernel classifier to disambiguate named enti-
ties. 

With the help of large scale automated algorithms making 
use of the largest corpora created by humans (like Wikipe-
dia), we are getting close to achieving the dream of Seman-
tic Web (Berners-Lee et al. [2001]). A step towards this ef-
fort is to extract structured information from Wikipedia and 
make it available to the research community, as shown by 
the DBpedia

2
 group [Auer et al., 2007]. In this work, we 

follow similar footsteps by providing processed, machine 
accessible (XML) dataset of entity names (person) and their 
Semantic Labels (occupation or role), and believe that this 
dataset (along with other similar datasets) will help us real-
ize our goal of connected, semantic web.  

In Section 2 of this paper, the methodology is explained 
in three steps. Section 3 is about experimental evaluation 
and Section 4 concludes the paper. 

2 Extraction from Infoboxes 

As can be seen on Figure 2, we first collect a subset of ar-
ticles from Wikipedia to work on. This subset contains ar-

                                                 
2 http://wiki.dbpedia.org/Datasets 

ticles about people. For each article, we extract the semantic 
label of the person by using a rule set on the infobox. Then 
the first paragraph of the article is chunked into noun phras-
es and the best combination of the chunks that match the 
semantic label is tagged as sem_label. The details are ex-
plained in the following subsections. 

2.1 Populating Input Data 

We worked on the 2007 dump of Wikipedia archive which 
contains more than 400,000 articles about people.  We col-
lected the list of person names from Freebase

3
, which is an 

open database of general information organized in the form 
of categories like movies, people, books, etc. Using Free-
base’s Metaweb Query Language

4
, we extracted a list of 

person names (840,265 names). Then, we used the JWPL
5
 

to check if an article exists for a given name and to fetch the 
corresponding article. The articles with an infobox are then 
stored in a database for further processing. 

2.2 Extracting Labels from Infoboxes 

We made a survey on the infobox attributes for the articles 
about people to make a rule set which would give the se-
mantic label for the person. The rule set is shown below: 
 

1- Value of occupation 

2- Value of order+title 

3- Value of order+office 

4- Value of title 

5- Value of office 

6- Value of order 

7- Infobox template name 

 
For the rules 1-6, we search for an attribute on the info-

box data. If a value for a rule is found, the system assigns 
that value as the semantic label and ignores the rest of the 
rules. If none of the attributes given in the rules 1-6 are 
found, then the template name of the infobox is assigned as 
the semantic label for the article.   

2.3 Mapping Labels in the Articles 

Once the semantic label is extracted from infoboxes, the 
next step is to find the occurrence of the semantic label in 
the plain text, and tag the occurrence with “<sem_label>” 
and “</sem_label>”.  The baseline approach is to find the 
exact or similar occurrences of the words by using a dis-
tance measure. We used the levenshtein distance

6
 algorithm 

to find the minimum edit distance and used the below simi-
larity formula to find the similar words with a threshold of 
80%. 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠1, 𝑠2 = 1 −
𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 𝑠1 , 𝑠2 

max  𝑠1 ,  𝑠2  
 

                                                 
3 Freebase: http://www.freebase.com/ 
4 MQL: http://www.freebase.com/view/en/documentation 
5 JWPL: http://www.ukp.tudarmstadt.de/software/jwpl/ 
6 http://en.wikipedia.org/wiki/Levenshtein_distance 
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Table 1: Dataset Description, (extracted from 2007 Wikipedia) 

The semantic label may consist of multiple words and the 
matches in the plain text might be distant from each other. 
For example, the semantic label extracted from infobox for 
Chris Buttars is “Utah State Senator” and the article con-
tains the sentence “Chris Buttars (born April 1, 1942) is a 
Republican state senator for Utah representing senate dis-
trict 10”. The matches of the words in the semantic label 
which are underlined in the example are not only distinct 
from each other, but also incomplete to be tagged as label.  

To solve this, we first split the plain text into Noun 
Phrase chunks using the MontyLingua

7
 library and then find 

the best combination of the chunks to mark as semantic la-
bel. The example illustrates the process: 

Chunking helps with finding the range for the sem_label 
tag. Moreover, it yields us to extract more information than 
the semantic label extracted from infobox. 

3 Dataset and Evaluation 

The extracted dataset is described in Table 1, which can be 
downloaded at: http://cips.eas.asu.edu/WikiSLE/. The output 
files are in XML format, and are organized as 26 files with 
approximately 1,000 entries each of: 1) Entity name, 2) In-
fobox Role 3) Tagged text with semantic labels. We random-
ly selected 500 entries from this dataset to check for extrac-
tion accuracy, and found that 16 of them had incorrect la-
bels, approximately giving the dataset 97% accuracy.  

4 Conclusions 

In this paper, we presented WikiSLE, which makes Wikipe-
dia a source and a corpus for training and testing AI and 
Machine learning algorithms in information extraction and 
WSD domain. Specifically, we presented our approach to 
map infobox attribute values with entities and semantic la-
bels in the article text. We also have made the extracted 

                                                 
7 MontyLingua: http://web.media.mit.edu/~hugo/montylingua/ 

dataset available to galvanize the research utilizing sources 
like Wikipedia. 
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Number of articles in Wikipedia 1,660,067 

Number of person names in Freebase 840,265 

Number of people that has a Wikipedia page 410,148 

Wikipedia articles with an infobox 53,713 

Articles of which infobox labels were extracted 49,260 

Articles of which labels are tagged in plain text 27,168 

Original sentence: 

Chris Buttars (born April 1, 1942) is a Republican state 

senator for Utah representing senate district 10. 

Chunked sentence with candidates marked: 

Chris Buttars | (born April 1, 1942) | is | a Republican state 

senator | for | Utah | representing | senate district 10. 

Candidate chunk groups: 

Chris Buttars | (born April 1, 1942) | is | a Republican state 

senator for Utah | representing | senate district 10. 

Labeled Sentence: 

Chris Buttars (born April 1, 1942) is a Republican state 

senator for Utah representing senate district 10. 
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