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Singleton [1] is a creational pattern with well-defined semantics ensuring that the 
instance is always created prior to use. This effectively solves the problem of 
initialization order when a number of interrelated objects are involved. But the 
pattern’s destruction semantics is inadequate for several singletons with complex 
dependencies among them. A Destruction-Managed Singleton complements this 
pattern by imposing a sound order of object destruction. Destruction-Managed 
Singleton is an instance of the Object Lifetime Manager pattern [2], which “governs 
the entire lifetime of objects, from creating them prior to their first use, to ensuring 
they are destroyed properly at program termination”. 

Intent 
Ensure the destruction of interdependent singletons in the correct order, and guarantee 
that there are no attempts to use previously deallocated objects. 

Motivation 
For example, suppose there is a global Logger object, and methods of other global 
entities use it for recording various status messages. Suppose further that the 
destructors of these entities must notify the Logger about system resources they 
release. Obviously, the Logger should be the last one to be destroyed. If the language 
rules destroy the Logger first, other objects might unknowingly attempt to use it, 
leading to unpredictable (and most probably disastrous) consequences. 
Figure 1 illustrates this scenario with an application which has a Logger object and a 
Resource object (representing another global entity). First, the application obtains a 
handle to the Resource (via function instance()), and then invokes its function 
process(). The latter uses a Logger to log a status message (using function log()). At 
program end, the application first destroys the Logger, then the Resource. The 
destructor of Resource attempts to use the Logger (calling Logger::instance()), and then 
all bets are off … 
 
This problem can be solved by using a dedicated Destruction Manager to control the 
order of singleton destruction. Whenever a singleton is created, its constructor notifies 
the Destruction Manager of when it should be destroyed (relative to other singletons). 
The constructor creates a destructor object which contains a pointer to the singleton 
and its (user-assigned) destruction phase1. The destructor is automatically registered 
with the Destruction Manager, which assumes responsibility for the corresponding 
singleton from then on. At the end of main(), the programmer should invoke a 
dedicated function of the Destruction Manager (destroy_objects()). The latter sorts all 
the destructors registered with it in the decreasing order of their phases, and then 
destroys the singletons in this order. The destruction per se is performed by calling a 
function destroy() of the destructor, which in turn invokes the function 
                                                 
1 The smaller the phase, the later the singleton should be destroyed. We assume there are no circular 
dependencies between singletons, so it is possible to assign each one an appropriate destruction phase. 



destroy_instance() of the singleton (accessible to the destructor due to its friend 
relationship with the latter).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Interaction diagram that illustrates the problem. 
 
From the structural point of view, Destruction-Managed Singleton is a compound 
pattern. It utilizes the reciprocity between Singleton and Destruction Manager, using 
the notion of registration2. Composite design patterns (or compound3 patterns) [3] are 
such that their basic building blocks are patterns themselves, rather than objects. The 
key notion in this definition is the synergy between the constituent patterns, which 
accounts for the ability of individual patterns to work together to become a more 
useful pattern. 
 
Since all the clients of a Singleton class share its lone instance, the design should 
impose a controlled protocol regarding the deletion of this object. Moreover, special 
care must be taken of the destruction order in the presence of several singleton objects 
depending on each other [6]. The Destruction Manager addresses exactly this 
situation: objects register with it for subsequent destruction, and each object is only 
destroyed when it is no longer needed. Observe that the Destruction Manager is not 
specific about the creation of objects, it only cares about their destruction. In fact, the 
Destruction Manager and the so-called creational patterns [1] lie on the opposite sides 
of the object lifetime management spectrum. Incidentally, since a single Destruction 
Manager is usually sufficient, and it should be globally available for other objects to 
register, it itself may be implemented as a Singleton.  

                                                 
2 Though not a pattern in its own right, registration of objects with some distinguished entity is a 
technique frequently used in patterns (e.g., Observer and registration of Prototypes in Abstract Factory, 
to name but a few). 
3 The name “compound pattern” is used hereafter, to keep with John Vlissides’ current usage of the term. 
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Applicability 
If some global object is a client of another one, the latter may not be destroyed until 
the former terminates. Otherwise, if the former inadvertently invokes a function of the 
latter after it ceased to exist, the aftermath may be rather gloomy. The C++ Standard 
[7] prescribes the order of initialization and destruction only for objects defined in the 
same translation unit. In all other cases, use Destruction-Managed Singleton for safe 
deallocation of interdependent global objects. 

Structure 
Figure 2 represents the class diagram of the Destruction-Managed Singleton. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Class diagram for Destruction-Managed Singleton. 

Participants 
• DestructionManager 

Responsible for destroying registered singletons in user-defined phases. 
• Provides function instance() to access the unique instance (singleton 

interface). 
• Singleton destructors register themselves using the register_destructor() 

function. 
• The application client invokes function destroy_objects() when graceful 

shutdown is required. 
• The destructor of the Destruction Manager (~DestructionManager()) 

deallocates all the destructor objects registered with it. As explained above, 
these auxiliary objects are dynamically created by singleton constructors, and 
have to be disposed of properly to prevent memory leak. 

• DestructionPhase 
Encapsulates the notion of a destruction phase. 
• Destruction phases can be compared using the boolean operator>(). 

• Destructor 
An abstract base class which represents objects to be destroyed in a particular 
phase. 
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• The constructor receives a phase parameter, and registers itself with the 
Destruction Manager, so that its function destroy() be invoked in this phase. 

• Pure virtual function destroy() is overridden in derived classes. Its 
invocation destroys the object represented by the destructor. 

• Destructors are comparable to one another, based on the values of their 
phases, via the boolean operator>(). 

• TDestructor 
A parameterized (template) class, whose instances enclose pointers to actual 
objects to be destroyed. 
• The constructor receives a pointer to an object and a phase in which the 

object should be destroyed, and registers with the Destruction Manager due to 
the implementation of the constructor of the base class. 

• Function destroy() literally destroys the underlying object, by calling its 
function destroy_instance() (which is assumed to be defined in all the classes 
instantiating the template). 

• Singleton 
In this design, represents a generic singleton object whose destruction should 
be controlled. 
• instance() is a vanilla access function. 
• The constructor creates a new destructor object of type 

TDestructor<Singleton> to represent this singleton. This destructor keeps a 
pointer to the singleton and the designator of its destruction phase. 

• Function destroy_instance() destroys the singleton. 
• Lastly, method() stands for all the other member functions of the singleton 

that define its specific behavior. For example, in a Logger class mentioned 
above, such would be the function void Logger::log(string message), which 
provides a message logging service for its clients. 

Collaborations 
The sequence diagram in Figure 3 depicts sample collaborations between the 
participants of the Destruction-Managed Singleton: 
(1)  The application requests access to the singleton instance, to invoke its method(). 
(2)  No instance has yet been created, and the static function instance() creates one by 

calling the singleton constructor. 
(3)  The Singleton constructor creates a destructor object of type TDestructor, to keep 

the singleton pointer and its destruction phase. 
(4)  The destructor attempts to obtain a reference to the Destruction Manager. 
(5)  No Destruction Manager exists, so the static function instance() creates one. 
(6)  The destructor registers itself with the Destruction Manager. 
(7)  The application invokes the method() member function of the singleton. 
(8)  Toward the end of the program, the application is about to perform a clean 

shutdown. To this end, it first obtains a reference to the Destruction Manager. 
(9)  The application calls function destroy_objects() of the Destruction Manager. 
(10)  The Destruction Manager sorts the destructors registered with it in the 

decreasing order of their phases, using the operator>(). 
(11) Upon sorting, the Destruction Manager invokes function destroy() of each 

destructor. 
(12) The destructor forwards the destruction request to the singleton it represents, 

by calling its function destroy_instance(). 



(13) The static function destroy_instance() deletes the singleton. 
(14) At the end of the program, the destructor of the Destruction Manager is 

automatically invoked.  
(15) The destructor of the Destruction Manager deallocates all the destructor 

objects registered with it. 
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Figure 3. Interaction diagram for Destruction-Managed Singleton. 

Implementation 
Listings 1 and 2 show the basic Singleton implementation. We use an implementation 
of Singleton [8] based on the auto_ptr class template – the C++ Standard Library [7] 
definition of smart pointer. This way, if a singleton is not controlled by the 
Destruction Manager (e.g., the Destruction Manager is also realized as a singleton, but 
does not destroy itself), the auto-pointer mechanism destroys the singleton object at 
program end4. 
 
The auto_ptr owns the object pointed to by its data member, and is responsible for its 
deletion. To facilitate this scheme, an auxiliary private function of class Singleton 
(get_instance()) defines a static auto-pointer to the actual object, which serves as a 

                                                 
4 In [4], Meyers suggests a Singleton implementation where the object instance is defined static in a 
dedicated function, which returns a reference to it. Such definition invokes the singleton destructor 
prior to program termination, thus preventing possible memory and resource leak. Observe that this 
approach tightly binds the singleton object with the enclosing function. 
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proxy for the latter. The object instance owned by the auto_ptr is thus detached from 
the access function wrapper (instance()) that ensures its singleton properties. It is this 
feature that allows the singleton object to be destroyed either by the auto_ptr itself, or 
by the Destruction Manager. In the latter case, function auto_ptr<Singleton>::release() is 
used to retrieve the singleton pointer; it revokes the ownership of the auto_ptr over the 
singleton, and thus prevents its repeated deletion5. 
 
The Singleton interface has two public access functions – const and non-const – 
which yield the singleton object by dereferencing the auto_ptr. For additional code 
safety, if the constant object will do the job, the access function const_instance() should 
be used. Both functions return a reference to the actual object (and not to the auto_ptr), 
in order to conceal the implementation details from clients. 
 
Listing 1. Singleton implementation (singleton.h): 
#include <memory>  // for auto_ptr 
using namespace std; 
 
class Singleton { 
  typedef auto_ptr<Singleton> SingletonPtr; 
 
  // return by reference to prevent transfer of ownership 
  static SingletonPtr& get_instance(); 
 
  // to allow auto_ptr delete the singleton 
  friend class auto_ptr<Singleton>; 
 
  // singletons should not be copied 
  Singleton(const Singleton&); 
  Singleton& operator=(const Singleton&); 
 
protected: 
  Singleton() { /* initialize the singleton object */ } 
  ~Singleton() { /* destroy the singleton object */ } 
public: 
  static Singleton& instance() { return *get_instance(); } 
  static const Singleton& const_instance() { return instance(); } 
}; 
 
Listing 2. Singleton implementation (singleton.cxx): 
#include "singleton.h" 
 
Singleton::SingletonPtr& Singleton::get_instance() { 
  static SingletonPtr the_singleton(new Singleton); 
 
  return the_singleton; 
} 

Implementation and sample code for the Destruction-Managed Singleton 
This section exemplifies the gist of the solution. The complete example code is 
available at the C++ Report Web site at http://www.creport.com/ … 
 

                                                 
5 According to the approved C++ Standard [7] (and as opposed to its previous draft editions), the 
release() function must set the auto_ptr data member pointer to NULL. This prevents repeated deletion 
when the auto_ptr checks the ownership over the pointed object in its destructor. 



Listing 3 defines the destruction phase. Remember that the smaller the phase, the later 
the object should be destroyed. 
 
Listing 3. Definition of the destruction phase (dphase.h): 
class DestructionPhase { 
  int m_phase; 
public: 
  explicit DestructionPhase (int phase) : m_phase(phase) {} 
 
  bool operator> (const DestructionPhase& dp) const 
  { return m_phase > dp.m_phase; } 
}; 
 
Listing 4 shows the hierarchy of classes for destructor objects. Destructor is an abstract 
class whose instances can be sorted according to their destruction phases. Class 
template TDestructor<> is derived from Destructor, and contains a pointer to the 
singleton object it is responsible for. The template parameter is instantiated to actual 
singleton classes that are assumed to define function destroy_instance(), which allows 
deletion of the object inside the auto_ptr (that's why it is necessary to detach the object 
from its wrapper). 
 
Listing 4. Definition of class Destructor and class template TDestructor (destructor.h): 
#include "dphase.h" 
#include "dmanager.h" 
 
class Destructor { 
  DestructionPhase m_dphase; 
public: 
  Destructor(DestructionPhase dphase) : m_dphase(dphase) 
  { DestructionManager::instance().register_destructor(this); } 
 
  bool operator>(const Destructor& destructor) const 
  { return m_dphase > destructor.m_dphase; } 
 
  virtual void destroy() = 0; 
}; 
 
template <class T> class TDestructor : public Destructor { 
  T* m_object; 
public: 
  TDestructor(T* object, DestructionPhase dphase) 
    : Destructor(dphase), m_object(object) {} 
 
  void destroy() { m_object->destroy_instance(); } 
}; 
 
The Destruction Manager is outlined in Listings 5 and 6 (some obvious details due to 
the Destruction Manager's being a singleton have been omitted for the sake of 
brevity). Singletons register their destructors with the Destruction Manager via 
function register_destructor(). The Destruction Manager is responsible for the memory 
occupied by (dynamically allocated) destructor objects, therefore, it has to delete 
them before it terminates. 
 
Function destroy_objects() sorts the destructors in the decreasing order of their phases, 
and then consecutively destroys the singleton objects they manage. It is this function 



that should be manually invoked at the end of main() to ensure proper destruction 
order of the program singletons. Class template greater_ptr<> is an auxiliary predicate 
for comparing objects given their pointers. 
 
Listing 5. Destruction Manager (dmanager.h): 
#include <memory> 
#include <vector> 
using namespace std; 
 
class Destructor;  // forward declaration 
class DestructionManager { 
  typedef auto_ptr<DestructionManager> DestructionManagerPtr; 
 
  vector<Destructor*> m_destructors; 
 
  static DestructionManagerPtr& get_instance(); 
 
  DestructionManager() {} 
  ~DestructionManager(); 
 
  friend class auto_ptr<DestructionManager>; 
 
public: 
  // singleton interface 
  static DestructionManager& instance() { return *get_instance(); } 
 
  void register_destructor(Destructor* destructor) 
  { m_destructors.push_back(destructor); } 
 
  void destroy_objects();  // destroy the objects 
}; 
 
Listing 6. Destruction Manager (dmanager.cxx): 
#include <algorithm>  // for sort() 
#include "dmanager.h" 
#include "destructor.h" 
using namespace std; 
 
DestructionManager::~DestructionManager() { 
  for (int i = 0; i < m_destructors.size(); ++i) 
    delete m_destructors[i]; 
} 
 
template <class T> class greater_ptr { 
public: 
  typedef T* T_ptr; 
 
  bool operator()(const T_ptr& lhs, const T_ptr& rhs) const 
  { return *lhs > *rhs; } 
}; 
 
void DestructionManager::destroy_objects() { 
  // sort the destructors in decreasing order 
  sort(m_destructors.begin(), m_destructors.end(), 
         greater_ptr<Destructor>()); 
 
  // destroy the objects 
  for (int i = 0; i < m_destructors.size(); ++i) 
    m_destructors[i]->destroy(); 



} 
 
It is the responsibility of the programmer to invoke function destroy_objects() on exit 
from main(). Observe that the destructor of DestructionManager does not call this 
function, because there is no control of when the destructor is invoked. For example, 
it may be invoked after the application shutdown process has started, in which case it 
is too late to call destroy_objects(), since some of the singletons may have already been 
destroyed. 
 
Listings 7 and 8 show a sample resource definition – a message logging class Logger 
(again, insignificant details have been omitted). The Logger here corresponds to the 
generic Singleton class of Sections “Structure”, “Participants” and “Collaborations”. 
The Logger constructor creates a new TDestructor object, which contains all the 
information necessary to destroy the Logger object at the right time. The constructor of 
TDestructor registers it with the Destruction Manager; the latter ultimately deletes the 
logger, and then deallocates the destructor object itself.  
Function destroy_instance() releases the singleton object from the auto_ptr, and then 
destroys it. Since the auto_ptr no longer owns the object, it would not attempt to delete 
it when the program terminates. Class TDestructor is defined a friend of Logger, so that 
its instances may access the function destroy_instance().  
 
Listing 7. Sample resource definition (logger.h): 
#include <memory> 
#include <string> 
#include <stdexcept> 
#include "dphase.h" 
#include "destructor.h" 
using namespace std; 
 
class Logger { 
  typedef auto_ptr<Logger> LoggerPtr; 
 
  static LoggerPtr& get_instance(); 
  static void destroy_instance() { delete get_instance().release(); } 
 
  Logger(); 
  ~Logger(); 
 
  friend class auto_ptr<Logger>; 
  friend class TDestructor<Logger>; 
 
public: 
  // checked singleton interface 
  static Logger& instance() throw (std::logic_error) {  
     Logger* logger = get_instance().get(); 
     if ( !logger ) 
       throw logic_error(“Logger is not available!”); 
     return *logger; 
  } 
 
  void log(string message); 
}; 
 



Note the implementation of the instance() function: it does not immediately return the 
dereferenced auto_ptr (in contrast to Listing 1), but first checks if it still points to a 
valid object. This test may fail in either of the following two cases: 
1) memory allocation has failed6 in function get_instance() (see Listing 8), or 
2) the singleton object has already been destroyed. 
The former case is extremely rare. The latter may occur if incorrect destruction phases 
have been assigned in the program, and some singleton is deleted prior to its last use. 
In such a case, when the Destruction Manager destroys the singleton via function 
release() of the auto_ptr, the data member pointer of the latter is cleared (see footnote 
5), and this causes the validity test to fail. Although this test incurs a slight run-time 
penalty on each singleton access, it should be used at least during the debugging 
stage, to verify the destruction policy. The idea of checking singletons for prior 
deletion comes from [11]. 
A word of caution: if a singleton’s destructor invokes a member function of another 
singleton that has already been destroyed, an std::logic_error exception will be thrown. 
It is dangerous for this exception to leave the destructor, for if the latter was invoked 
during stack unwinding due to an exception thrown earlier, function terminate() will be 
immediately called, aborting the application [7]. This situation is discussed in [5]. 
 
Listing 8. Sample resource definition (logger.cxx): 
#include <iostream> 
#include <string> 
#include "dphase.h" 
#include "destructor.h" 
#include "logger.h" 
using namespace std; 
 
Logger::LoggerPtr& Logger::get_instance() { 
  static LoggerPtr the_logger(new Logger); 
  return the_logger; 
} 
 
Logger::Logger() { 
  new TDestructor<Logger>(this, DestructionPhase(1)); 
  cout << "Logger created" << endl; 
} 
 
Logger::~Logger() { cout << "Logger destroyed" << endl; } 
 
void Logger::log(string message)  
{ cerr << "Logger: " << message << endl; } 
 
The complete example code (available from the C++ Report Web site) also defines 
class Resource, whose destructor uses function Logger::log() to record error messages 
(if any). 
 
At last, Listing 9 presents the function main(). 
 
Listing 9. Sample main program (main.cxx): 
#include "dmanager.h" 
#include "resource.h" 
 

                                                 
6 Unless the operator new throws on failure an std::bad_alloc exception. 



class DestroyObjects { 
public: 
  ~DestroyObjects()  
  { DestructionManager::instance.destroy_objects(); } 
}; 
 
void main(void) { 
  DestroyObjects destroyer; 
 
  // … 
  Resource::instance().process(); 
 
  // The destructor of ‘destroyer’ is invoked automatically on exit  
  // from ‘main()’, commencing the controlled destruction of singletons. 
} 
 
The function DestructionManager::instance.destroy_objects() is invoked by the destructor 
of a utility class DestroyObjects, thus relieving the programmer from having to call it 
explicitly at the end of main(). This approach facilitates multiple exit points from 
main(), so it is not necessary to copy the cleanup code over and over again. More 
important, it also works in case of exceptions propagating through main(), since 
destructors of local objects are automatically invoked during stack unwinding. If 
destroyer is the first local variable defined in main(), its destructor would be called last 
[7], and thus the Destruction Manager would be invoked immediately before leaving 
the function. 
In the example code available at the C++ Report Web site, class DestroyObjects is 
defined in file “dmanager.h”, following the definition of class DestructionManager. 
This is more convenient to clients, as the Destruction Manager comes complete with 
this auxiliary class. 

Consequences 
Destruction-Managed Singleton is a compound pattern for controlling the destruction 
order of singleton objects. It achieves this aim due to the cooperation of the following 
individual patterns and techniques: 

• The Singleton pattern resolves the initialization order of interdependent global 
objects, and ensures the program-wide uniqueness of the resource it manages. 

• The Destruction Manager is a complementary pattern for managing the other 
end of objects’ life span, namely, destruction. Therefore, it may be considered a 
destructional pattern, as opposed to creational patterns [1] like Abstract Factory, 
Factory Method, or Singleton itself for that matter. 

• The Proxy pattern (realized through the auto_ptr implementation of the concept 
of smart pointer) allows to detach the Singleton object from its wrapper, and thus 
facilitates its destruction by the Destruction Manager (bypassing the regular 
auto_ptr mechanism). 

• The Registration technique enables singletons to sign up with the Destruction 
Manager for subsequent destruction at an appropriate time. 

The Destruction-Managed Singleton handles the entire life span of a singleton, 
extending the behavior of the original pattern [1]. This compound pattern guarantees 
the object is created prior to use, and exists as long as it is needed. In addition to 
enforcing the destruction policy, the Destruction-Managed Singleton constantly 
verifies its validity, and throws an exception whenever a sound destruction order is 
breached. 



Discussion 
This section examines several incidental issues, including the tradeoffs incorporated 
in the Destruction-Managed Singleton. 

Managing non-singleton objects 
When a program uses global objects which are not singletons, and especially if there 
are singletons that depend on non-singletons, the more comprehensive Object 
Lifetime Manager [2] should be used. This pattern controls creation and destruction of 
objects which are not necessarily singletons, and is available as a built-in part of ACE 
[9]. 

Alternative destruction policies 
Instead of using an express notion of destruction phases, an alternative approach 
could require each singleton to explicitly specify on which other objects it depends. 
The Destruction Manager would then perform a topological sort of the dependencies 
graph, deducing the phases of destruction automatically. This would require the 
constructor of each singleton to notify the Destruction Manager of all the other 
singletons it depends on. In a simple solution where the constructor registers pointers 
to all the other singletons it might use, all those would be created even if some of 
them are not needed in a particular program execution. A more elaborate solution 
would identify singletons by their (unique) string names rather than pointers, but this 
seems to be an overkill. 

Thread-safety 
Among the issues this article does not address is thread-safety. Probably every 
existing singleton implementation uses variables defined at global scope. In a multi-
tasking environment this may constitute a problem, should a singleton have to serve 
multiple threads. The Double-Checked Locking pattern [10] presents a good solution 
to this problem, minimizing the amount of coordination necessary for preserving the 
consistency of critical sections. Vlissides [6] notes that in multi-threaded applications 
it would be well-advised to use an access function instance() that returns a pointer to 
the singleton rather than a reference. This is because “some C++ compilers generate 
internal data structures that cannot be protected by locks”. 

Genericity 
Finally, it should be mentioned that ACE [9] provides a reusable singleton adapter, 
ACE_Singleton, which accepts a user-defined class as a parameter, and makes it a 
Singleton. The idea is based upon the concept of separation of responsibilities 
between the two classes: the user class (also known as the adapted class) and the 
adapter class. The latter is solely responsible for the "Singleton-ness" of the former, 
which can concentrate on the business modeling aspects per se. The Double-Checked 
Locking technique [10] is already incorporated in this adapter, which contains an 
additional parameter to facilitate different locking policies. If necessary, the 
ACE_Singleton template can be easily integrated into the Destruction-Managed 
Singleton. 
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