
Destruction-Managed Singleton: a compound pattern for
reliable deallocation of singletons

Evgeniy Gabrilovich

gabr@acm.org

Singleton [1] is a creational pattern with well-defined semantics ensuring that the
instance is always created prior to use. This effectively solves the problem of
initialization order when a number of interrelated objects are involved. But the
pattern’s destruction semantics is inadequate for several singletons with complex
dependencies among them. A Destruction-Managed Singleton complements this
pattern by imposing a sound order of object destruction. Destruction-Managed
Singleton is an instance of the Object Lifetime Manager pattern [2], which “governs
the entire lifetime of objects, from creating them prior to their first use, to ensuring
they are destroyed properly at program termination”.

Intent
Ensure the destruction of interdependent singletons in the correct order, and guarantee
that there are no attempts to use previously deallocated objects.

Motivation
For example, suppose there is a global Logger object, and methods of other global
entities use it for recording various status messages. Suppose further that the
destructors of these entities must notify the Logger about system resources they
release. Obviously, the Logger should be the last one to be destroyed. If the language
rules destroy the Logger first, other objects might unknowingly attempt to use it,
leading to unpredictable (and most probably disastrous) consequences.
Figure 1 illustrates this scenario with an application which has a Logger object and a
Resource object (representing another global entity). First, the application obtains a
handle to the Resource (via function instance()), and then invokes its function
process(). The latter uses a Logger to log a status message (using function log()). At
program end, the application first destroys the Logger, then the Resource. The
destructor of Resource attempts to use the Logger (calling Logger::instance()), and then
all bets are off …

This problem can be solved by using a dedicated Destruction Manager to control the
order of singleton destruction. Whenever a singleton is created, its constructor notifies
the Destruction Manager of when it should be destroyed (relative to other singletons).
The constructor creates a destructor object which contains a pointer to the singleton
and its (user-assigned) destruction phase1. The destructor is automatically registered
with the Destruction Manager, which assumes responsibility for the corresponding
singleton from then on. At the end of main(), the programmer should invoke a
dedicated function of the Destruction Manager (destroy_objects()). The latter sorts all
the destructors registered with it in the decreasing order of their phases, and then
destroys the singletons in this order. The destruction per se is performed by calling a
function destroy() of the destructor, which in turn invokes the function

1 The smaller the phase, the later the singleton should be destroyed. We assume there are no circular
dependencies between singletons, so it is possible to assign each one an appropriate destruction phase.

destroy_instance() of the singleton (accessible to the destructor due to its friend
relationship with the latter).

Figure 1. Interaction diagram that illustrates the problem.

From the structural point of view, Destruction-Managed Singleton is a compound
pattern. It utilizes the reciprocity between Singleton and Destruction Manager, using
the notion of registration2. Composite design patterns (or compound3 patterns) [3] are
such that their basic building blocks are patterns themselves, rather than objects. The
key notion in this definition is the synergy between the constituent patterns, which
accounts for the ability of individual patterns to work together to become a more
useful pattern.

Since all the clients of a Singleton class share its lone instance, the design should
impose a controlled protocol regarding the deletion of this object. Moreover, special
care must be taken of the destruction order in the presence of several singleton objects
depending on each other [6]. The Destruction Manager addresses exactly this
situation: objects register with it for subsequent destruction, and each object is only
destroyed when it is no longer needed. Observe that the Destruction Manager is not
specific about the creation of objects, it only cares about their destruction. In fact, the
Destruction Manager and the so-called creational patterns [1] lie on the opposite sides
of the object lifetime management spectrum. Incidentally, since a single Destruction
Manager is usually sufficient, and it should be globally available for other objects to
register, it itself may be implemented as a Singleton.

2 Though not a pattern in its own right, registration of objects with some distinguished entity is a
technique frequently used in patterns (e.g., Observer and registration of Prototypes in Abstract Factory,
to name but a few).
3 The name “compound pattern” is used hereafter, to keep with John Vlissides’ current usage of the term.

Application Logger Resource

process()

instance()
Logger()

instance() Resource()

log()

~Resource()

instance()

~Logger()

Disaster:
Logger does not
exist any more ...

Applicability
If some global object is a client of another one, the latter may not be destroyed until
the former terminates. Otherwise, if the former inadvertently invokes a function of the
latter after it ceased to exist, the aftermath may be rather gloomy. The C++ Standard
[7] prescribes the order of initialization and destruction only for objects defined in the
same translation unit. In all other cases, use Destruction-Managed Singleton for safe
deallocation of interdependent global objects.

Structure
Figure 2 represents the class diagram of the Destruction-Managed Singleton.

Figure 2. Class diagram for Destruction-Managed Singleton.

Participants
• DestructionManager

Responsible for destroying registered singletons in user-defined phases.
• Provides function instance() to access the unique instance (singleton

interface).
• Singleton destructors register themselves using the register_destructor()

function.
• The application client invokes function destroy_objects() when graceful

shutdown is required.
• The destructor of the Destruction Manager (~DestructionManager())

deallocates all the destructor objects registered with it. As explained above,
these auxiliary objects are dynamically created by singleton constructors, and
have to be disposed of properly to prevent memory leak.

• DestructionPhase
Encapsulates the notion of a destruction phase.
• Destruction phases can be compared using the boolean operator>().

• Destructor
An abstract base class which represents objects to be destroyed in a particular
phase.

DestructionPhase
m_phase : int

operator>()

DestructionManager

instance()
register_destructor()
destroy_objects()
~DestructionManager()

Destructor

Destructor()
operator>()
destroy()

**

T

TDestructor<T>
m_object : T*

TDestructor()
destroy()

Singleton

Singleton()
instance()
destroy_instance()
method()

destroy()
{m_object->destroy_instance();}

Destructor()
{DestructionManager::instance().register_destructor(this);}

• The constructor receives a phase parameter, and registers itself with the
Destruction Manager, so that its function destroy() be invoked in this phase.

• Pure virtual function destroy() is overridden in derived classes. Its
invocation destroys the object represented by the destructor.

• Destructors are comparable to one another, based on the values of their
phases, via the boolean operator>().

• TDestructor
A parameterized (template) class, whose instances enclose pointers to actual
objects to be destroyed.
• The constructor receives a pointer to an object and a phase in which the

object should be destroyed, and registers with the Destruction Manager due to
the implementation of the constructor of the base class.

• Function destroy() literally destroys the underlying object, by calling its
function destroy_instance() (which is assumed to be defined in all the classes
instantiating the template).

• Singleton
In this design, represents a generic singleton object whose destruction should
be controlled.
• instance() is a vanilla access function.
• The constructor creates a new destructor object of type

TDestructor<Singleton> to represent this singleton. This destructor keeps a
pointer to the singleton and the designator of its destruction phase.

• Function destroy_instance() destroys the singleton.
• Lastly, method() stands for all the other member functions of the singleton

that define its specific behavior. For example, in a Logger class mentioned
above, such would be the function void Logger::log(string message), which
provides a message logging service for its clients.

Collaborations
The sequence diagram in Figure 3 depicts sample collaborations between the
participants of the Destruction-Managed Singleton:
(1) The application requests access to the singleton instance, to invoke its method().
(2) No instance has yet been created, and the static function instance() creates one by

calling the singleton constructor.
(3) The Singleton constructor creates a destructor object of type TDestructor, to keep

the singleton pointer and its destruction phase.
(4) The destructor attempts to obtain a reference to the Destruction Manager.
(5) No Destruction Manager exists, so the static function instance() creates one.
(6) The destructor registers itself with the Destruction Manager.
(7) The application invokes the method() member function of the singleton.
(8) Toward the end of the program, the application is about to perform a clean

shutdown. To this end, it first obtains a reference to the Destruction Manager.
(9) The application calls function destroy_objects() of the Destruction Manager.
(10) The Destruction Manager sorts the destructors registered with it in the

decreasing order of their phases, using the operator>().
(11) Upon sorting, the Destruction Manager invokes function destroy() of each

destructor.
(12) The destructor forwards the destruction request to the singleton it represents,

by calling its function destroy_instance().

(13) The static function destroy_instance() deletes the singleton.
(14) At the end of the program, the destructor of the Destruction Manager is

automatically invoked.
(15) The destructor of the Destruction Manager deallocates all the destructor

objects registered with it.

 (1)
 (2)

 (3) (4)
 (5)

 (6)
 (7)

 (8)
 (9)
 (10)

 (12) (11)

 (13)

 (14)

 (15)

Figure 3. Interaction diagram for Destruction-Managed Singleton.

Implementation
Listings 1 and 2 show the basic Singleton implementation. We use an implementation
of Singleton [8] based on the auto_ptr class template – the C++ Standard Library [7]
definition of smart pointer. This way, if a singleton is not controlled by the
Destruction Manager (e.g., the Destruction Manager is also realized as a singleton, but
does not destroy itself), the auto-pointer mechanism destroys the singleton object at
program end4.

The auto_ptr owns the object pointed to by its data member, and is responsible for its
deletion. To facilitate this scheme, an auxiliary private function of class Singleton
(get_instance()) defines a static auto-pointer to the actual object, which serves as a

4 In [4], Meyers suggests a Singleton implementation where the object instance is defined static in a
dedicated function, which returns a reference to it. Such definition invokes the singleton destructor
prior to program termination, thus preventing possible memory and resource leak. Observe that this
approach tightly binds the singleton object with the enclosing function.

Application : Singleton : TDestructor<T> : DestructionManager

instance()

TDestructor(this, phase)
instance()

register_destructor(this)

Singleton()

instance()

destroy_objects()
operator>()
destroy()

destroy_instance()

~DestructionManager()

~TDestructor()

~Singleton()

DestructionManager()

method()

proxy for the latter. The object instance owned by the auto_ptr is thus detached from
the access function wrapper (instance()) that ensures its singleton properties. It is this
feature that allows the singleton object to be destroyed either by the auto_ptr itself, or
by the Destruction Manager. In the latter case, function auto_ptr<Singleton>::release() is
used to retrieve the singleton pointer; it revokes the ownership of the auto_ptr over the
singleton, and thus prevents its repeated deletion5.

The Singleton interface has two public access functions – const and non-const –
which yield the singleton object by dereferencing the auto_ptr. For additional code
safety, if the constant object will do the job, the access function const_instance() should
be used. Both functions return a reference to the actual object (and not to the auto_ptr),
in order to conceal the implementation details from clients.

Listing 1. Singleton implementation (singleton.h):
#include <memory> // for auto_ptr
using namespace std;

class Singleton {
 typedef auto_ptr<Singleton> SingletonPtr;

 // return by reference to prevent transfer of ownership
 static SingletonPtr& get_instance();

 // to allow auto_ptr delete the singleton
 friend class auto_ptr<Singleton>;

 // singletons should not be copied
 Singleton(const Singleton&);
 Singleton& operator=(const Singleton&);

protected:
 Singleton() { /* initialize the singleton object */ }
 ~Singleton() { /* destroy the singleton object */ }
public:
 static Singleton& instance() { return *get_instance(); }
 static const Singleton& const_instance() { return instance(); }
};

Listing 2. Singleton implementation (singleton.cxx):
#include "singleton.h"

Singleton::SingletonPtr& Singleton::get_instance() {
 static SingletonPtr the_singleton(new Singleton);

 return the_singleton;
}

Implementation and sample code for the Destruction-Managed Singleton
This section exemplifies the gist of the solution. The complete example code is
available at the C++ Report Web site at http://www.creport.com/ …

5 According to the approved C++ Standard [7] (and as opposed to its previous draft editions), the
release() function must set the auto_ptr data member pointer to NULL. This prevents repeated deletion
when the auto_ptr checks the ownership over the pointed object in its destructor.

Listing 3 defines the destruction phase. Remember that the smaller the phase, the later
the object should be destroyed.

Listing 3. Definition of the destruction phase (dphase.h):
class DestructionPhase {
 int m_phase;
public:
 explicit DestructionPhase (int phase) : m_phase(phase) {}

 bool operator> (const DestructionPhase& dp) const
 { return m_phase > dp.m_phase; }
};

Listing 4 shows the hierarchy of classes for destructor objects. Destructor is an abstract
class whose instances can be sorted according to their destruction phases. Class
template TDestructor<> is derived from Destructor, and contains a pointer to the
singleton object it is responsible for. The template parameter is instantiated to actual
singleton classes that are assumed to define function destroy_instance(), which allows
deletion of the object inside the auto_ptr (that's why it is necessary to detach the object
from its wrapper).

Listing 4. Definition of class Destructor and class template TDestructor (destructor.h):
#include "dphase.h"
#include "dmanager.h"

class Destructor {
 DestructionPhase m_dphase;
public:
 Destructor(DestructionPhase dphase) : m_dphase(dphase)
 { DestructionManager::instance().register_destructor(this); }

 bool operator>(const Destructor& destructor) const
 { return m_dphase > destructor.m_dphase; }

 virtual void destroy() = 0;
};

template <class T> class TDestructor : public Destructor {
 T* m_object;
public:
 TDestructor(T* object, DestructionPhase dphase)
 : Destructor(dphase), m_object(object) {}

 void destroy() { m_object->destroy_instance(); }
};

The Destruction Manager is outlined in Listings 5 and 6 (some obvious details due to
the Destruction Manager's being a singleton have been omitted for the sake of
brevity). Singletons register their destructors with the Destruction Manager via
function register_destructor(). The Destruction Manager is responsible for the memory
occupied by (dynamically allocated) destructor objects, therefore, it has to delete
them before it terminates.

Function destroy_objects() sorts the destructors in the decreasing order of their phases,
and then consecutively destroys the singleton objects they manage. It is this function

that should be manually invoked at the end of main() to ensure proper destruction
order of the program singletons. Class template greater_ptr<> is an auxiliary predicate
for comparing objects given their pointers.

Listing 5. Destruction Manager (dmanager.h):
#include <memory>
#include <vector>
using namespace std;

class Destructor; // forward declaration
class DestructionManager {
 typedef auto_ptr<DestructionManager> DestructionManagerPtr;

 vector<Destructor*> m_destructors;

 static DestructionManagerPtr& get_instance();

 DestructionManager() {}
 ~DestructionManager();

 friend class auto_ptr<DestructionManager>;

public:
 // singleton interface
 static DestructionManager& instance() { return *get_instance(); }

 void register_destructor(Destructor* destructor)
 { m_destructors.push_back(destructor); }

 void destroy_objects(); // destroy the objects
};

Listing 6. Destruction Manager (dmanager.cxx):
#include <algorithm> // for sort()
#include "dmanager.h"
#include "destructor.h"
using namespace std;

DestructionManager::~DestructionManager() {
 for (int i = 0; i < m_destructors.size(); ++i)
 delete m_destructors[i];
}

template <class T> class greater_ptr {
public:
 typedef T* T_ptr;

 bool operator()(const T_ptr& lhs, const T_ptr& rhs) const
 { return *lhs > *rhs; }
};

void DestructionManager::destroy_objects() {
 // sort the destructors in decreasing order
 sort(m_destructors.begin(), m_destructors.end(),
 greater_ptr<Destructor>());

 // destroy the objects
 for (int i = 0; i < m_destructors.size(); ++i)
 m_destructors[i]->destroy();

}

It is the responsibility of the programmer to invoke function destroy_objects() on exit
from main(). Observe that the destructor of DestructionManager does not call this
function, because there is no control of when the destructor is invoked. For example,
it may be invoked after the application shutdown process has started, in which case it
is too late to call destroy_objects(), since some of the singletons may have already been
destroyed.

Listings 7 and 8 show a sample resource definition – a message logging class Logger
(again, insignificant details have been omitted). The Logger here corresponds to the
generic Singleton class of Sections “Structure”, “Participants” and “Collaborations”.
The Logger constructor creates a new TDestructor object, which contains all the
information necessary to destroy the Logger object at the right time. The constructor of
TDestructor registers it with the Destruction Manager; the latter ultimately deletes the
logger, and then deallocates the destructor object itself.
Function destroy_instance() releases the singleton object from the auto_ptr, and then
destroys it. Since the auto_ptr no longer owns the object, it would not attempt to delete
it when the program terminates. Class TDestructor is defined a friend of Logger, so that
its instances may access the function destroy_instance().

Listing 7. Sample resource definition (logger.h):
#include <memory>
#include <string>
#include <stdexcept>
#include "dphase.h"
#include "destructor.h"
using namespace std;

class Logger {
 typedef auto_ptr<Logger> LoggerPtr;

 static LoggerPtr& get_instance();
 static void destroy_instance() { delete get_instance().release(); }

 Logger();
 ~Logger();

 friend class auto_ptr<Logger>;
 friend class TDestructor<Logger>;

public:
 // checked singleton interface
 static Logger& instance() throw (std::logic_error) {
 Logger* logger = get_instance().get();
 if (!logger)
 throw logic_error(“Logger is not available!”);
 return *logger;
 }

 void log(string message);
};

Note the implementation of the instance() function: it does not immediately return the
dereferenced auto_ptr (in contrast to Listing 1), but first checks if it still points to a
valid object. This test may fail in either of the following two cases:
1) memory allocation has failed6 in function get_instance() (see Listing 8), or
2) the singleton object has already been destroyed.
The former case is extremely rare. The latter may occur if incorrect destruction phases
have been assigned in the program, and some singleton is deleted prior to its last use.
In such a case, when the Destruction Manager destroys the singleton via function
release() of the auto_ptr, the data member pointer of the latter is cleared (see footnote
5), and this causes the validity test to fail. Although this test incurs a slight run-time
penalty on each singleton access, it should be used at least during the debugging
stage, to verify the destruction policy. The idea of checking singletons for prior
deletion comes from [11].
A word of caution: if a singleton’s destructor invokes a member function of another
singleton that has already been destroyed, an std::logic_error exception will be thrown.
It is dangerous for this exception to leave the destructor, for if the latter was invoked
during stack unwinding due to an exception thrown earlier, function terminate() will be
immediately called, aborting the application [7]. This situation is discussed in [5].

Listing 8. Sample resource definition (logger.cxx):
#include <iostream>
#include <string>
#include "dphase.h"
#include "destructor.h"
#include "logger.h"
using namespace std;

Logger::LoggerPtr& Logger::get_instance() {
 static LoggerPtr the_logger(new Logger);
 return the_logger;
}

Logger::Logger() {
 new TDestructor<Logger>(this, DestructionPhase(1));
 cout << "Logger created" << endl;
}

Logger::~Logger() { cout << "Logger destroyed" << endl; }

void Logger::log(string message)
{ cerr << "Logger: " << message << endl; }

The complete example code (available from the C++ Report Web site) also defines
class Resource, whose destructor uses function Logger::log() to record error messages
(if any).

At last, Listing 9 presents the function main().

Listing 9. Sample main program (main.cxx):
#include "dmanager.h"
#include "resource.h"

6 Unless the operator new throws on failure an std::bad_alloc exception.

class DestroyObjects {
public:
 ~DestroyObjects()
 { DestructionManager::instance.destroy_objects(); }
};

void main(void) {
 DestroyObjects destroyer;

 // …
 Resource::instance().process();

 // The destructor of ‘destroyer’ is invoked automatically on exit
 // from ‘main()’, commencing the controlled destruction of singletons.
}

The function DestructionManager::instance.destroy_objects() is invoked by the destructor
of a utility class DestroyObjects, thus relieving the programmer from having to call it
explicitly at the end of main(). This approach facilitates multiple exit points from
main(), so it is not necessary to copy the cleanup code over and over again. More
important, it also works in case of exceptions propagating through main(), since
destructors of local objects are automatically invoked during stack unwinding. If
destroyer is the first local variable defined in main(), its destructor would be called last
[7], and thus the Destruction Manager would be invoked immediately before leaving
the function.
In the example code available at the C++ Report Web site, class DestroyObjects is
defined in file “dmanager.h”, following the definition of class DestructionManager.
This is more convenient to clients, as the Destruction Manager comes complete with
this auxiliary class.

Consequences
Destruction-Managed Singleton is a compound pattern for controlling the destruction
order of singleton objects. It achieves this aim due to the cooperation of the following
individual patterns and techniques:

• The Singleton pattern resolves the initialization order of interdependent global
objects, and ensures the program-wide uniqueness of the resource it manages.

• The Destruction Manager is a complementary pattern for managing the other
end of objects’ life span, namely, destruction. Therefore, it may be considered a
destructional pattern, as opposed to creational patterns [1] like Abstract Factory,
Factory Method, or Singleton itself for that matter.

• The Proxy pattern (realized through the auto_ptr implementation of the concept
of smart pointer) allows to detach the Singleton object from its wrapper, and thus
facilitates its destruction by the Destruction Manager (bypassing the regular
auto_ptr mechanism).

• The Registration technique enables singletons to sign up with the Destruction
Manager for subsequent destruction at an appropriate time.

The Destruction-Managed Singleton handles the entire life span of a singleton,
extending the behavior of the original pattern [1]. This compound pattern guarantees
the object is created prior to use, and exists as long as it is needed. In addition to
enforcing the destruction policy, the Destruction-Managed Singleton constantly
verifies its validity, and throws an exception whenever a sound destruction order is
breached.

Discussion
This section examines several incidental issues, including the tradeoffs incorporated
in the Destruction-Managed Singleton.

Managing non-singleton objects
When a program uses global objects which are not singletons, and especially if there
are singletons that depend on non-singletons, the more comprehensive Object
Lifetime Manager [2] should be used. This pattern controls creation and destruction of
objects which are not necessarily singletons, and is available as a built-in part of ACE
[9].

Alternative destruction policies
Instead of using an express notion of destruction phases, an alternative approach
could require each singleton to explicitly specify on which other objects it depends.
The Destruction Manager would then perform a topological sort of the dependencies
graph, deducing the phases of destruction automatically. This would require the
constructor of each singleton to notify the Destruction Manager of all the other
singletons it depends on. In a simple solution where the constructor registers pointers
to all the other singletons it might use, all those would be created even if some of
them are not needed in a particular program execution. A more elaborate solution
would identify singletons by their (unique) string names rather than pointers, but this
seems to be an overkill.

Thread-safety
Among the issues this article does not address is thread-safety. Probably every
existing singleton implementation uses variables defined at global scope. In a multi-
tasking environment this may constitute a problem, should a singleton have to serve
multiple threads. The Double-Checked Locking pattern [10] presents a good solution
to this problem, minimizing the amount of coordination necessary for preserving the
consistency of critical sections. Vlissides [6] notes that in multi-threaded applications
it would be well-advised to use an access function instance() that returns a pointer to
the singleton rather than a reference. This is because “some C++ compilers generate
internal data structures that cannot be protected by locks”.

Genericity
Finally, it should be mentioned that ACE [9] provides a reusable singleton adapter,
ACE_Singleton, which accepts a user-defined class as a parameter, and makes it a
Singleton. The idea is based upon the concept of separation of responsibilities
between the two classes: the user class (also known as the adapted class) and the
adapter class. The latter is solely responsible for the "Singleton-ness" of the former,
which can concentrate on the business modeling aspects per se. The Double-Checked
Locking technique [10] is already incorporated in this adapter, which contains an
additional parameter to facilitate different locking policies. If necessary, the
ACE_Singleton template can be easily integrated into the Destruction-Managed
Singleton.

Acknowledgments
Destruction-Managed Singleton was inspired by an example code from [12], where an
initialization manager working in phases was used to resolve the mutual initialization
order of global variables (without singletons, but using two-stage object construction).
Special thanks are due to Brad Appleton, Patterns++ Section Editor, for many
enlightening discussions and for his guidance during the preparation of this article.
Thanks to Avner Ben and Vitaly Surazhsky for their constructive comments and
suggestions.

References
[1] Gamma, E., et al. "Design Patterns: Elements of Reusable Software Architecture",
 Addison Wesley, 1995.
[2] Levine, D. L., et al. “Object Lifetime Manager – A Complementary Pattern for
 Controlling Object Creation and Destruction”, C++ Report, 12(1), January 2000.
[3] Vlissides, J. "Composite Design Patterns", C++ Report, 10(6): 45-47, June 1998.
[4] Meyers, S. "Effective C++", 2nd edition, Addison Wesley, 1998.
[5] Meyers, S. "More Effective C++", Addison Wesley, 1996.
[6] Vlissides, J. "Pattern Hatching: Design Patterns Applied", Addison Wesley, 1998.
[7] "Information Technology – Programming Languages – C++",
 International Standard ISO/IEC 14882-1998(E).
[8] Gabrilovich, E. “Controlling the Destruction Order of Singleton Objects”,
 C/C++ Users Journal, October 1999.
[9] Schmidt, D. C. “ACE: an Object-Oriented Framework for Developing
 Distributed Applications”, in Proceedings of the 6th USENIX C++ Technical
 Conference, Cambridge, Massachusetts, USENIX Association, April 1994.
[10] Schmidt, D. C. and T. Harrison “Double-Checked Locking – An Optimization
 Pattern for Efficiently Initializing and Accessing Thread-safe Objects”, in
 Pattern Languages of Program Design (Martin, Buschmann, and Riehle, eds.),
 Addison Wesley 1997.
[11] Alexandrescu, A. Private correspondence, 1999.
[12] Ben-Yehuda, S. "C++ Design Patterns" course, SELA Labs (http://www.sela.co.il).

About the author
Evgeniy Gabrilovich is a Strategic Development Team Leader at Comverse
Technology Inc., a developer of multimedia communications processing technology.
He holds an M.Sc. in Computer Science from the Technion - Israel Institute of
Technology. His interests involve Natural Language Processing, Artificial
Intelligence, and Speech Processing. He can be contacted at gabr@acm.org .

